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Abstract

We obtain a characterization of local Besov spaces of functioris-@nl] in terms of algebraic
polynomial operators. These operators are constructed using the coefficients in the orthogonal poly-
nomial expansions of the functions involved. The example of Jacobi polynomials is studied in further
detail. A by-product of our proofs is an apparently simple proof of the fact that the Cesaro means
of a sufficiently high integer order of the Jacobi expansion of a continuous function are uniformly
bounded.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the polynomials of best approximation to a continuous function on
[—1, 11need not provide a good pointwise approximation. For examplg(let:= |x|, and
P} be its best polynomial approximation of degree at most= 1, 2, ... . Eventhouglfis
a piecewise polynomial, the pointwise errgif (x) — P (x)| remains bounded away from
0 at a set of points that becomes densg-eh, 1] asn — oo through a subsequence (cf.
[1, Theorem 4.1]). Many mathematicians, including Gaier, lvanov, Saff, and T6tik3,
and references therein), have studied the construction of polynomials that provide a near
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best approximation to piecewise analytic functions on the whole int¢rv/g]1], and an
exponentially fast decaying approximation at points of analyticity of the function.

For example, Gaief6] constructed a sequence of linear operai@son the space
C[—1, 1] of continuous functions op-1, 1], such that for eacli € C[—1, 1], and integer
n>1,G,(f) is a polynomial of degree at mast and satisfies the following conditions:

max 1£() = (£, 01 <M(e™™ + Enjeoo(f) (1.1)
and iff is regular in the complex neighborhogd— xo| <d of a pointxg € [—1, 1], then

|f (x0) = Gu(f, x0)| < M(f)d~* exp(—cd?n), (1.2)

whereE, 5 «( f) is the minimal error of uniform approximation 6ty polynomials of
degree at most/6 (cf. (2.2) below) M (f) is a positive constant depending onlyfpand

¢, o.are absolute positive constants. Gaier’s construction is based on the Fourier—Chebyshev
coefficients of. In [11], Prestin and this author constructed a sequence of operatsush

that max<; |7, (f, x)| tends to zero exponentially fastas~> oo if f is analytic orl, while

maX.c; |7, (f, x)| is larger than a polynomial in 1/if some derivative off has a jump
discontinuity inl.

The techniquesif,11]are dependent on complex function theory, and are not applicable
forlocal approximation of functions which are not piecewise analytitL 3, we have given
a construction of operators, similar to those[11d], but applicable to piecewise smooth
functions (with a commensurate rate of decay on intervals of smoothness). In this paper, we
construct polynomial operators, whose behavior on subintervglsigfi ] characterizeshe
local Besov spaces to which the function may belong on these subintervals. These operators
are based on the coefficients of an orthogonal polynomial expansion of the function. The
periodic analogue of these results is givejlif], where several numerical examples are
discussed in detail.

In the next section, we state our main result in a very general setting. This will identify the
conditions on the various matrices and measures needed in the construction of our operators.
In turn, the construction of these matrices, measures, etc. will be discussed in Séntion
the context of the Jacobi polynomials. The proofs of the results in Se@iand3 will be
presented in Sectioh

We thank the referees for their suggestions for an improvement of our original draft.

2. The results in a general setting

In this section, we describe our main results in the setting of a general orthogonal polyno-
mial system, identifying the various conditions that the polynomial operators should satisfy.
These conditions will then be verified in the context of Jacobi polynomials.

Let 1 be a positive, Borel measure ¢r1, 1], andS, denote the support gf. If A C
[—1,1]is a Borel setu(A) > 0, andf : A — Ris u-measurable, we write

1/p

1y = 1flap = {/A 'f“)"’d“(”} TL<p<co (2.1)
1 —esssup,lf@)l if p=o0.
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The spacd.”(A) := L?(u; A) consists of alu-measurable functiorfawith || f 4., < oo,
with the usual convention that two functions are considered equal if they areieglmabst
everywhere. The symbdl”(A) = XP?(u; A) will denote the spac&?(A) if 1<p < o0
and the space of all uniformly continuous, bounded function& @uuipped with the norm
ll-1la,00) if p =00.1f A C [-1, 1]is aclosed set, the symbG}° (A) will denote the class
of infinitely differentiable functions on[—1, 1], such thatf(x) = 0if x € [—-1,1]\ A.

In the sequely will be a fixed, finite measure, and we will often omit its mention from the
notations. Also, ifA = S, we will omit it from the notations; for example, we will write
1£lp = 1fls,.p- We will assume tha$,, is an infinite set.

There are many equivalent ways of defining Besov spaceg5gf.We find it most
convenient to define them using the sequence of degrees of approximation of the functions
involved. Forx >0, the class of all algebraic polynomials of degree at musl be denoted
by I1,. For f € X? andx >0, we define the degree of approximatiorf éfom IT, by

Ex p(f) = Epx p(f) = P”;{_T\. If = Plp. (2.2)

Next, we define a sequence space as follows. Let@< oo, y > 0, anda = {a,};° , be a
sequence of real numbers. We define

00 1/p
{ZZ”W|an|p} if0 < p < oo,
lallp,y :== n=0 (2.3)
sup2”’|a,| if p = o0.
n=0

The space of sequenafor which||a| ., < cowillbe denoted by, . For 1< p<oo,0 <
p<o00,y > 0, the Besov spacB,, ,, := By;p,p,y consists of functiong’ € X” for which
the sequencéEx ,(f)} € by ,. For xy € [—1,1], the local Besov spacg, , ,(xo) :=
By p.p.y(x0) consists of functiong’ € X7 with the following property: There exists an
intervall, centered ato such that for everyy € C5°(1), the functionf¢ € B, , ;. This
interval may depend updrandxg in addition to the other parameters.

Our objective in this paperis to characterize local Besov spaces in terms of operators based
on the coefficients of the target function in terms of an orthogonal polynomial expansion. We
recall[19] that there is a unique system of polynomigls:= p,(w) € I1,,n =0, 1, ...,
eachp, having a positive leading coefficient, such that

1 ifn=m,
/pnpmd,uz {0 if n # m. (24)
If £ e X1, we define its orthogonal polynomial coefficients by

Fomy = fum) = / FOpm®dn@),  m=01, ... . (2.5)

Our operators will be defined using a bi-infinite matrix.Hf = (h, n)/_Ol . is a bi-
=1,2
infinite matrix such that for each>1, h;,, = 0 if j is greater than some integer, we will
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define the operator

on(H, f,x) 1= 0,(u; H, f,):= Y hjnf(Dpjx),  feX" (2.6)
j=0

We note that, (H, f) is a polynomial for each > 1, and with

o
G (H,x,y) = @y (; H,x,y) =Y hjapj()pj(y),  x,yeR, (2.7)
j=0

we have the representation

on(H, f.x) = / FOVBu(H, x, du(y).  feXh xeR. (2.8)

In the sequel, we find it convenient to defilng, := O for any realk < . Correspondingly,
we also define, (H, f) := 0and®,(H, x, y) := 0 forall realr < 1. Forn >0, we write

T(H, f) = 1a(u: H, [) := 020(H, f) — 0pn-1(H, [). (2.9)

We note thatifz; , = Oforj > n,n =0,1, ..., our notation implies that, (H, f) e I1,,
andr,,(H, f) e I1on.

For 0 >1, the setS¢ := S2(w) consists of all matricesl such that:; , = 0 if j > n,
hj,=1if0<j<n/2,

sup  [[@n(H, x,)|l1 < 00 (2.10)

n=1,xeS,
and for everyxg € S, andn > 0, there exists a constant= c(xo, n) such that,

sup n@|®,(H, x,y)| <c, Ix — xol <1/2. (2.11)
nz=1, yeS\[xo—n,xo+1]

An example of matrices i§€ is given in Theoren3.1in the next section.

In the sequel, we adopt the following convention regarding constants. The symbols
¢, c1, - .. will denote positive constants depending upom, y, p, andQ, in addition to any
explicitly mentioned quantities. Their value may be different at different occurences, even
within the same formula.

We will characterize the local Besov spaces using the norms of the operatéfsy)
on subintervals of—1, 1]. We would also like to give a characterization using values of
these polynomials at certain points. As expected, this depends upon a quadrature formula,
and a connection between discrete and continuous norms of a polynomial. Accordingly, we
introduce some further notation.ifs a signed, Borel measure pal, 1], its total variation
measure will be denoted Hy| (or |dv| in the context of integration). Forameasurable
functionf, andv-measurable subset C [—1,1], we write | fllv.4,p = [ flljv:a,p- AS
before, we will omit the mention of the satif A =[—1,1].

The measure will be called an M—Z quadrature measure of ordéfor p) if its support
is a subset of the support of

||P||\’:17<C||P”;l;p» Pell,, 1<p<x (2.12)
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and
/Pdv = / Pdu, P eIl,. (2.13)

For a sequencg,} of M—Z quadrature measures, it is assumed tacithy that the comrstant
in (2.12) is independent af. An estimate of form (2.12) is often called a Marcinkiewicz—
Zygmund-type inequality. Many examples of such estimates are known in the literature (for
example[8,12], and references therein). In the next section, we will mention an example
in the case of Jacobi polynomials.

For the purpose of future reference, we note here thgtif an M—Z quadrature measure
of ordern,n = 0, 1, ..., His a bi-infinite matrix withz; , = 0 for all j > », and (2.10)
holds, then also the following estimate holds.

sup [|Pm (H, x, )lly,:1 < c, o<m<n, n=0,1,.... (2.14)

xe§,

Our main theorem in this paper is the following.

Theorem 2.1. Letl<p<oo, f € X, x0 € [-1,1],0< p<oo,y > 0,0 > max(l,y),
H e 82, and for each integer >0, let v, be an M—Z quadrature measure of ord&2").
Then

o o0
f=) wH =) / @ (H, f, D){ @i (H, -, 1) — Ppz(H, -, D)}dva (1),
n=0 n=0
(2.15)
with the series converging in the senseXdf. Moreover the following are equivalent.

@) f € By py(x0).

(b) Thereexists aninterval¢entered ato, such thatforeverp € C5°(I), {llt,(H, f )i}
€ byy.

(c) There exists an interval Icentered atxp, such that for everygp < Cg°(I),
{ltn(H, fP)llv,:p) € bpy.

(d) There exists an interval tentered atco, such that{||z,,(H, f) |l7,p} € by, ;.

(e) There exists an interval tentered ateo, such that{||z, (H, f)llv,:1,p} € bp,-

In all the anticipated applications, the measurewill be supported on finite set$, of
points in[—1, 1]. In this case, (2.15) preserits,(H, f,t)};cc, as the sequence of coeffi-
cients in a series representatiorf,@nd the equivalence between parts (a) and (e) shows that
the local Besov spaces can be characterized using the absolute values of these coefficients.
We note here that the operators are defined using global information about the function, in
the form of the coefficients (k), and yet, their behavior is different near different points,
depending upon the smoothnes$ wéar these points. Moreover, the local Besov spaces are
characterised in terms of the norms{of(H, f)} themselves, rather than their approxima-
tion tof, asin (L.1), (1.2). TheorerB.1below can be used to construct (in the case of Jacobi
polynomials) matrices that belong & for every integeQ. Therefore, a single sequence
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of operators may be used for the characterization of all the smoothness classes, a situation
expected in polynomial approximation. The equivalence between (a) and (b) (or (c)) shows
that the apparently global condition thate X7 is really not necessary if one is interested

only in the behavior of near a point. Working with the coefficienfsp in place of those of

f, the local smoothness conditions imply the global behavior of the opergtl, f ¢).

3. Jacobi polynomials

In this section, we illustrate the technical conditions which we discussed in the previous
section. Thus, we demonstrate a general construction of the ntatexS< in the case of
the Jacobi polynomials. We will recall a construction of M—Z quadrature formulas in this
case. We will also make an additional observation regarding expansion (2.15).

We recall that the Jacobi weight is defined o8 > —1 by

L—x)*1L+x)P ifxe(-11),
0

W px) = { ifx e R\ (—1,1).

The corresponding measyrg s is defined byl i, 3(x) := w, g(x)dx, and we will simplify
our notations by writingx, 8 in place ofy; for example, we write| f ||, 5.4, , instead of

I/, 5 4.p- We recall the definition of the Jacobi polynomiav?,,f“’ﬁ)} [19]. For integer
n>0, P,f“’ﬁ) e I1,, has a positive leading coefficient, and with

@p._ 2T Te+et+ DI+ f+D) 3.1)
" 2n4+a+f+1Tn+DIn+o+f+1)
we have for integers, m >0,
1 (@.p)
(. B) (2, ) K ifn=m
P, P, w dx =1"n ] ' 3.2
/4 (x) () wg, p(x)dx {0 itn % m (3.2)

B2 @p
Thus, pa (i, p) = 15" P,

3.1. M-Z quadrature

Nevai[17, Theorem 25, p. 168jas given an example of M—Z quadratures for the Jacobi
weights. Fomn >1, let {x; ,,}""_; be the zeros PP and
m—1 1 -1
D = Y KPP 02 k=1,
j=0
Nevai has proved that fon > cn, the measure;, that associates the mags,, with each
Xk.m IS @an M—Z quadrature measure of orderlt is possible to construct M—Z quadra-

ture measures supported at an “arbitrary” system of points, subject to certain denseness
conditions. We plan to address this question in another paper.
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3.2. The matrices and Cesaro means
The following theorem gives a general construction for matrice®%i, f3).

Theorem 3.1. Leto, > — 1/2,0 > 0, 0>0,K>Q + o + p + 2 be an integerand

h : [0, 00) — R be afunction which is a K times iterated integral of a function of bounded
variation, #'(x) = 0if 0<x <, andh(x) = 0if x > ¢. Then the matrixd = ()
defined byhy,, = h(k/n), n>1, satisfies(2.10) and (2.11) with y, 4 in place ofyu. In
particular, if h(x) = 1for 0<x<1/2andh(x) = Ofor x > 1,thenH € S9(a, ).

We recall that ift > —1, and

n _ k _
Cll(a, B; x, ) ::Z(” Z+ )m“/‘) PP ) PP (), (3.3)
v=0

the Cesaro means of ordeof f € X! are defined by

n+k

-1 1
‘ ) /lf(y)C,Ek](fx,ﬁ;x,y)wa,/;(y)dy- (3.4)

S (o, B f, x) = <
The following theorem is well knowf2,19].

Theorem 3.2. Letwa, > — 1/2,k > max(«, f) + 1/2.Thenforn = 1,2, ..,

max [[CH (o, B; x, 1< en”. (3.5)
xe[—1,1]

In Theorem3.1, the fact thaH satisfies (2.10) can be obtained using TheoB®by a
simple summation by parts argument a$lif)]. However, the bounds for the decay of the
Cesaro kernel€,[lk], similar to (2.11) and known to this authid, do not improve with the
orderk. Our method to prove such bounds for the kernels does not use the properties of the
Cesaro means. Instead, Theordr follows in the case of integdcas an application of
Lemmad4.6 obtained during our proof of (2.10). We feel that this proof is simpler than that
given in[19].

3.3. Series expansion

Finally, we make a remark about representation (2.15). The system of functions
{Pon+1(H, -, t) — Py-2(H, -, 1) };c, 1S NOt linearly independent, and hence, the coeffi-
cients of the series representation in (2.15) are not uniquely determined. The following
theorem shows that in the case whtiis as in Theoren3.1, the behavior of an arbitrary
coefficient sequence which works in (2.15) implies the local Besov conditions.

Theorem 3.3. Leta, > —1/2,u = p, g, 1< p<oo, f € XP, x0 € [-1,1],0 < p<oo,
7> 0,0 > maxy,1), H € S9(a, f) be as in TheorerB.1, and for each integen >0,
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let v, be an M-Z quadrature measure of ord&2"). For n >0, let d,, be av,, measurable
function,and ||d, ||y, < c. Suppose that

f= Zfdn(f){‘pznﬂ(% BiH. 1) = Py2(o, By H. - D}dv(1), (3.6)
n=0

where the series converges in the sens& ofIf there exists an interval | centered &g
such that{[|dy|ly,:1.p} € by, thenf € By g, 5 »(x0)-

We note that sincé€®,u+1(a, f; H, -, t) — ®m-2(a, f; H, -, t)} are not linearly indepen-
dent, the converse of Theoredr8 cannot hold.
4. Proofs

In order to prove Theorer.1, we need some lemmas. The first lemma is a simple
consequence of the Riesz—Thorin interpolation thedBmheorem 1.1.1], and we state it
in order to refer to it in a convenient way.
Lemma 4.1. Let m1, m2 be signed measurgbaving bounded variationpn a measure

space Ssupported orf; and Sz, respectively¥ : S x S — R be a boundedn1| x |m2|
measurable functionf’ (x, 1) = W(¢,x) forx,r € S, 1< p<oo, f € LP(Jm1|), and let

Ty(x) I=/f(t)5”(x,t)dm1(t)-

Then with
A = max(sup || ¥(x, )llimpl;1, SUP I (X, ljmy;1),
xeSy xeSy
we have
1T lmal: p < AN Nima:p- (4.1)

Proof. We observe that

/ 7700 dma(o)] < / / PO 0l [dma©)ldma()
< Sup”lp('»t)|||m2|;1”f|||m1|;1<A||f|||m1|;l'

teS1
This proves (4.1) in the case = 1. The casep = oo is obvious, and the general
case follows from the Riesz—Thorin interpolation theorem applied to the linear operator
f—=T, 0O

The first application of this lemma is the following lemma, summarizing some properties
of the operator®,, (H).
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Lemma 4.2. Letl<p<oo, f € XP, x0 € [-1,1],0< p<oo,y > 0, 0 > max(1,y),
H e 82, and for each integer >1, letv, be an M—Z quadrature measure of ord&2").
Then(2.15)holds with convergence in the senseXa@f. Moreover,

lom(H, Hlp<cllfllp, m=01,.... (4.2)
Consequentlyfor m >0,
Em,p(f)<||f_6m(Hs f)||p<CEm/2,p(f)- (43)

Proof. Estimate (4.2) follows immediately from (2.10) and Lemad, applied with
m2 = m1 = W. The first estimate of (4.3) is obvious. Sinkg,, = 1 for k<m/2, we
haveos,,(H, P) = P for all P € Il,,/». Therefore, choosing® € Il,,» with || f —
Pll,<2Ep 2 ,(f), we obtain

If—om(H, Ollp =IIf —P—om(H, f—P)llp
SWf=Plp+llon(H, f—Pllp
< C||f_P||p<CEm/2,p(f)-

This proves the second inequality in (4.3). The first equation in (2.15) follows from (4.3)
and the definition ot,. Next, we observe thaR, := ®ont1(H, x, ) — P-2(H, x, ) €
[Mpnr @andhy gni1 — hy gn2 = 1 if 2n=2 < Lo, Sincernﬁi,\f)(k) # 0 only when
272 < k<2", andR, 1, (H, f) € Mg, we see from (2.13) that

T (H, f, %) :/Trl(Hv f D R(0)d p(t) Z/Tn(H, fi DR (D)dvy (1), x € R
This gives the second equation in (2.15).]

Another application of Lemmad.1is the following lemma, relating the continuous and
discrete norms of polynomials gr-1, 1], as well as on subintervals pf1, 1].

Lemma 4.3. Letm >0, v be an M—Z quadrature measure of ord&n, and suppose that
there exists a matri¥l € S¢ for someQ >0. Then forP e Iy,

”P”;t;p<C”P”v;p<01”P”,u;p- (4-4)
If J c I C[-1,1]areintervalsthen forpP < I1,,,

IPNwsp < el DUPIv1p +m™ 2Py ),
1Py, s,p < e, DUPlgr,p +m 2Pl p)- (4.5)

Proof. Let P € I1y,. In view of (2.13) and the fact that 4, = 1 for 0O<k <2m, we have

P(x) =/P(t)¢4m(H,x,t)d,u(t)=/P(t)(154m(H,x,t)dv(t).



252 H.N. Mhaskar / Journal of Approximation Theory 131 (2004) 243-267

We use Lemmd.1with my = uandmy = v, and use (2.10), (2.14) fot, to arrive at the
first inequality in (4.4). The second inequality is (2.12).

Next, letP e I1,,, and¢$ € C3°(1) be chosen so thafi(x) = 1 if x € J. By the direct
theorem of approximation theof$, Theorem 6.2, Chapter 7], there exigts= I1,, such
that

I = Rllco <, Jym™2.
Therefore, using (4.4) for the polynomiIR € I15,,,
I1Pls.p = IPPls.p SIPRlwp + 1P — R)llwp
< e, DUPRIy;p +m =PI Py}
< e, DAIP Iy p +m~ @I Pl p)
< e, DAIPvrp +m 2Pl ).
This proves the first inequality in (4.5). The second inequality is proved in a similar way.
O

We are now in a position to prove Theor&mn.

Proof of Theorem 2.1. First, we prove the equivalence of parts (a)—(c). Let (a) hold, and
¢ be aC* function such thaf¢ € B, , . In view of (4.3),
ltn(H, fP)llp < o2 (H, f§) — fPllp + lo-1(H, fd) = fPlp
< cEp-2 ,(f Q).

This implies part (b). Conversely, let (b) hold, apdoe aC function as in that part. In
view of (2.15),

Ex py(fO)<Ifd— Y tuH, fO)lp< D Ntm(H. fO)lp-
m=0 m=n+1

Sincefl|t,,(H, fP)ll,} € by, the discrete Hardy inequalifs, Lemma 3.4, p. 27how
leads to part (a). The equivalence between parts (b) and (c) is immediate from (4.4).

Next, we will show that part (b) implies part (d), and part (d) implies part (a)l betas in
part (b), and (respectively/Ji) be the interval centered & and length1|/2 (respectively,
|11/4). Lety € C3°(1) be chosen so that(x) = 1 forx € J and||y/|lo = 1. Forx € Jy,
we have from (2.11) that for any integer>1,

f fFOA—-y@)Pu(H, x, 1)du(r)

= ‘/ FOQA =y @) P (H, x, )d (1)
S\J

</ If(t)(l—w(t))@m(H,x,t)ldu(t)éc(l)m‘Q/If(t)ldu(t)
et >111/8

<em 2N fll,p.
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Applying this inequality once witln = 2" and once withn = 2"~1, we deduce that

ITa(H, (1= ¥) .0 <c(f, D272,
Therefore,

Itn(H, Pl p < lta(H Y Ol p + clitn(H, (1 =) f)]l1.00

<
< Nea(H A Hllp + c(f, D27C.

Since both the sequencl, (H, ¥ /)l »} and{2"9} are inb, , part (d) is proved.

Next, let part (d) hold] be the interval as in that part, agde C3°(I). By the direct
theorem of approximation theof$, Theorem 6.2, Chapter 7], there exi®s= I1>: such
that

llp — Rll[-1.17.00<c27"9.

Therefore, using (4.2) and (2.15), we obtain

Egiir ,(f¢) < f ¢ — Roz(H, P, <I(f — o2 (H, Il
+11(¢p — RYon (H, )l
<,y OUS —on(H, Hlrp+27"9)

<c, 1 D NwmH, Pl +27"C .

m=n+1

The discrete Hardy inequalifs, Lemma 3.4, p. 27how shows thatf¢ € B, , ;. Thus,
part (d) implies part (a).

Thus, parts (a)—(d) are equivalent. The equivalence between parts (d) and (e) is a simple
consequence of (4.5).00

In the sequel, we will assume that the meaguiethe Jacobi distributiop,, z and often
omit «, f from the notations, when it is not expected to cause confusion.

The proof of Theoren8.1 requires several technical estimates. We observe first that
P, P (x) = (=1)"P, B9 (—x),n = 0,1, ... . Hence, there is no loss of generality in
assuming that > > — 1/2. The idea behind the proof d&.(L0) is the following. We will
use the formula (cf19, Formulas (4.5.3), (4.3.3), (4.1.1)])

n
Ko fi L0 =Y P P, 0P () B, P (1)
m=0
_pupor Troat f+2) g )
TF'oa+LDIn+p+1) "
_ 2a+1) o LB
T 2ndoat+p+2"
repeatedly along with a summation by parts to obtain an alternate formula for the kernel
®,(H, 1, x).ltwillthen be clearthat®, (H, 1, -)||1 < c. Inview of the convolution structure
on the Jacobi polynomialf?], this will lead to (2.10). The estimate required in (2.11)
is proved in the case when € (—1,1) andy € (—c1(x), c2(x)) using the asymptotic

1Pn (a+1,8) (x)P, (“+1,/3)(1) (4.6)
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formulas for the Jacobi polynomials and some ideas ff{d8)14]. The case whemn ¢
(—c1(x), c2(x)) requires a more elaborate analysis, involving a product formula proved in
[7] by Koornwinder. The details will be organized in a series of lemmas, starting with a
general formula for summation by parts.

During the remainder of the proof of Theoré&hi, we will adopt the following notation.
The forward difference operator is defined by

Aay = Atay = a1 — ay, A¥ay = A4 ay), v=0, k=2 4.7

We will write for x € R,

2xx+o+pf+k
14 =— k>2
) = k-1
and define a modified difference of a sequence by
[k=1] k—1
k] Ay ay !

al = Aay, a >0, k>2. (4.8)

) = - , vV
! GOv+1) ()
The partial summation operators corresponding to these differences are defined by

m m
s,[nl] = Zav, s,[ff] = Zﬂk(v)sy“l], m>=0, k>2. (4.9)
v=0 v=0

We defines!s) = 0if m < 0.
The following lemma describes some properties of the partial summation.

Lemma 4.4. Let{h,} be a sequence with, = O if v is greater than some positive integer,
{a,} be any sequenc®V/e have fok = 1,2, ...,

00 00
> hay = (=1F Y alsH (4.10)
v=0 v=0
andforv=0,1,..,k=1,2,...,
k-1 k—m
A h
[k] y
|y |<C2;) W . (4.12)
m=!

Proof. Using the fact thak[_li = 0, and the fact that, = 0 for sufficiently largev, a
summation by parts shows that

o0 o o0 o o

1
E hyay, = E hv(s‘[,l] — s‘[,_]l) = E hvsgl] - E hv+1s‘[,l] = — E Ahvs\[,l].
v=0 v=0

v=0 v=0 v=0

Hence, (4.10) holds wheln= 1. Supposé& >2 and the formula holds far — 1 in place
of k. Using the fact thaky‘] — s£’i]1 = Zk(v)sﬁk’”, and summing by parts again, we
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deduce that
o~ 1) k-1 o Ay g
Y "l = § = E:h
y=0 " " E (V) ( )

Thus, (4.10) is proved by induction.

In this proof only, we will denote byR,, t € R, the set of all rational functions such
that the degree of the denominator is at l¢ambre than the degree of the numerator. We
note that eactR; is a linear spaceR, € R, for u>t. Moreover, ifR € R;, andL is a
polynomial of precise degree 1, th&- + 1) — R(-) € R;+1,andR/L € R,4+1. Inorder to
prove (4.11), we will prove by induction that fer= 1, 2, . . ., there exisiRy ,» € Ri+m—1,
m=0,...,k— 1, such that

k—1
W9 =3 R4 DA Ry, v=0,1,.. (4.12)
m=0

We will write R ,, =0if m < 0orm > k — 1. EQ. (4.12) is obvious it = 1. Suppose
k>2and (4.12) is proved fdr — 1 in place ofk. From definition (4.8), we see that

plkl — 1 Apl—11 _ o plk=1L (4.13)
Y (v+ 1) Y (a+k—21)0W) "

From the induction hypothesis,

k—2
AR = 37 A (Rics (v + DA, )
m=0
k—2
=2 Re-1nv + 24" h,y
m=0
k—2
b5 A (B 1042~ R0+ 1)
m=0
k-1
_ Z A" Ry (Re—1m( +2) + Ri—1m—1(V +2) — R m—1(v + 1)) .
m=0
(4.14)

The induction hypothesis also gives
k=2 k—1

WY =3 Ream(v+ DA "0y = 3 Re_g oa(v+ DA ™h,. (4.15)
m=0 m=0
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We now putform =0, ...,k — 1, andx € R,

1
R (x) == AT (Rkl,m(x +2) 4+ Ri—1m—1(x +2) = Rp—y m—1(x + 1)

1
- Rt 1m- . 4.16
R YA R )) (4.16)
SinceRi—1,m-1(- + 2) — Rk—1.m—1(- + 1) € Riym—2, it is easy to deduce thay ,, €
Ri+m—1. EQs. (4.13)—(4.15) now imply that (4.12) holds kofThus, the proof is complete
by induction.
Estimate (4.11) is immediately clear from (4.12).]

Next, we introduce some kernel functions. koy € R,n =0, 1,.. ., let

n
-1
Kna(x,y) = Kpa(on Bix,y) ==Y 16, PP, &P o) PPy,
v=0

n
Kuk(x,y) o= Ky g (o i x,y) i= > GMKyp1(x.y), k=2.3,... (4.17)
v=0

with the convention as usual th&t x(x, y) = 0 if r < 0. Applying (4.6) repeatedly, we
obtain

I'n+o+f+k+1) P, D ().

K, D) = K i(1, - !
x(x, 1) &(1, %) 224+B+k M (n + B+ DI (o + k)

(4.18)

We will also use heavily the following product formula proved by Koornwindégr

Proposition 4.1. Leta>f> —1/2,R := [0, 1] x [0, n],andforx, y € [—1, 1],r € [0, 1],
¢ € [0, n], let

A+xA+y) n 1-x1- Y) 2

F(x,y;r ¢):=

2 2
+v1—x2,/1— y2rcos¢ — 1. (4.19)

There exists a probability measupe= p, g on R such that fom = 0,1,..., andx, y €
[_15 l]v

P, %P )P, P (y) = / P, AP @) P, P (F(x, y; r, p))dp(r, p). (4.20)
R

Lemma4.4 and Propositiort.1 immediately lead to the following lemma, giving (in
particular) alternative expressions for the keri@g(H).
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Lemma 4.5. Leth := {h,} be a sequence with, = 0 if v is greater than some positive
integer,o, f> — 1/2.Thenfork = 1,2, ..., we have

o0
-1
W(h,x.y) =P pihxy) =Y b PP ) PP (y)
v=0

o0
= (D) MK (x ). (4.21)
v=0

In particular,fork = 1,2, ...,

Yh,x,1)=¥(h,1,x)

ad FOG+oa+p+k+1)
=(=1)F Y " plA P, ()., 4.22
b ; V2w C(v+ f+ DI+ k) 0 (422)

fa>p>—1/2,thenfork =1,2,...,

Y, x,y)

=(_1)k/ ih[k] I'ov+oa+p+k+1)
Ry=o '

2Bk (v + B+ D (e + k)
x PP (F(x, yir, 9))dp(r, §). (4.23)

Proof. We apply Lemmat.4with a, = 16,5 1 P, @B (x) P, (y) to obtain (4.21). The
equation (4.22) follows from (4.21) and (4.18). In view of Proposidoh,

N -1
ay = 16, P /R P )PP (F(x, i 1, p)dp(r, ).

Therefore, (4.23) follows from (4.22).]
Our next lemma gives a general bound on the norms of the kernels in (4.23).

Lemma 4.6. Leth = {h,} be a sequence with, = 0 if v is greater than some positive
integer,o, f> — 1/2,and K > max(«, f§) + 3/2be an integer. Then

K oo
fulpl]na”(h,x, Mapa<clPM, 1) lapa<c Y Y v+ 1/ Halh|. (4.24)
xe[-1, j=1v=0

Proof. First, leta.> f. In this proof only, letf denote the functio®?’(h, 1, y). Then using
the notation of Askey and Waing¢2, Formula (A-2)], we see that for,y € [—1,1],

P (h, x, y) isequalto the generalized translatiffy; x). Hence, the firstinequality in (4.24)
follows from [2, Theorem 1]. Sinc&K > o + 3/2, we have fronj19, Formula (7.34.1)]
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thatforv=0,1, ...,
1
/ L= PP (y)dy<ew+ DF*2,
0

0
/ L+ PIPEED () dy < (v + 1) Y2,
1

Consequently, for =0, 1, .. .,

I'v+o+p+K+1)
24K (v + B+ DI (o + K)

1Py KD, 51 <e(v+ 12K 2,

In view of (4.11), we deduce that

]

s I'v+o+p+K+1) P GHKp)
0

24K (v + B+ DI (o + K) 17
K-1

ey Y DI AR,

m=0 v=0

||a,ﬂ;l

V=

The second estimate in (4.24) now follows from (4.22).
If B> o, we observe tha?(a, B; h, x, y) = Y(B, o; h, —x, —y), and

”lp(a» ﬁv ha X, ')Hac.ﬂ;l = ”lIJ(ﬁs o h, —X, )||ﬁ,0(,1 D

We have now finished with our preparation for the proof210). We pause in our proof
of Theorem3.1, and indicate how Lemn¥a6leads to a proof of Theoref2.

Proof of Theorem 3.2 for integer k > max(«, f§) + 1/2. We let

- k .
h _{(n vt ) |fv=0,...,n,
v — k
0

otherwise

and observe (by induction ghthat with differences applied to the variable

n—v+k—j>
, v

A/‘h\,,,,z(—l)f( =0,....n, j=1,...,k

k—j
and
T {(—1)k+1 itv=n,
’ 0 otherwise.
Therefore,

n k+1

DY o+ 1 A hy |

v=0 j=1
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n k .
=(n+1)k+ZZ(v+l)jl(n v ’)
v=0 j=1 k—j
n k-1
<(n+1F —i—cZZ( , )(v+1)f(n—v+1)’<—1—f<cnk.

v=0 j=0
Thus, Lemmat.6 (applied withk + 1 in place ofK) implies (3.5). O

We now resume our proof of Theore3rl, with the preparations for the proof of (2.11).
Again, the details are encoded in a number of lemmas. First, we recall some properties of
the Jacobi polynomials.

Proposition 4.2. Leta, f> —1/2.Forv=0,1,..., we have

min((v + 1%, (1 — x)~*2" Y44 4 1)7Y2)  ifo<x<1,

min((v + 1)f, (L + x) P2 V4 + 1)"Y?) if —1<x<0.
(4.25)

Further, for any integerq > 1, there exist complex valued functiods,, continuous on
(0, ), such that for € (0, n),

1P, P (x)<e {

qg—1
P, P (cosh) = 2R [ D AnO0 + D7 Mexpive) ¢ + O((v+ 1)1 3,
m=0
(4.26)

where theD term is uniform on compact subintervals(6f r).

Proof. Estimate (4.25) is proved {19, Theorem 7.32.2], the asymptotics (4.26) is proved
in [19, Theorem 8.21.9]. O

We start with the case whene (—1, 1) and|y| is away from 1.
Lemma 4.7. Leta, > —1/2,x € (—1,1), 1— |y| > min(1/36, L — |x|)2/25),q >1be

an integer. Let:, = Oif v is greater than some integeand 4k, = 0 if v<q + 1. Then

4—1 oo

ZZW Shyl(v+1)7F, (4.27)

s=0v=0

c(q, X)

|¥(h, x, y)|<

wherec(q, x) is bounded for x in compact subintervals(efl, 1).

Proof. In this proof only, letx = cosf, y = cos¢. Using Lemmad.5, we obtain

oo
Wh,x,y)=—> AhKya(x,y). (4.28)
v=0
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According to[19, Formula (4.5.2)],
K, 1(cosf, cosg)
B 27 b TG4+ 2T(v4+ o+ f+2)
S vt a+f+2TIv+oa+DI(v+B+1)
P,11%P) (cosh) P, P (cos¢) — P, %P (cosh) P, 1P (cosg)
x cosf — cos¢ '

WIiting By m,e(0, ¢) = An(0)Ac(d)e’’, and B (0. ) = An(0)Ac($)e'’, and using
(4.26), we deduce that

Py1*P (cost) P,*P) (cose)

(4.29)

q—1
= 20 [ > Bime(0. ¢)(v+ 1" expliv + ¢))]

m,£=0

g—1
+20t [ D Baw O DO+ explive — ¢)>= +O((v+1)777h).

m,£=0
(4.30)

We interchange the roles éfand ¢ above, and substitute the resulting asymptotics back
in (4.29) to obtain (withB3 ,,, ¢(0, ) = B1.m.¢(0, ) — B1 m.e(¢p, 0) andBa ,, ¢(0, ¢) =
BZ,m,E(ev ¢) - BZ,m,E(¢» 9))

m, =0

qg-1
2 (x — y)Kya(x, y) =0 { > Bame(0, 9)(v+ 1) expliv(0 + ¢>)]

q
+R [ Z Bam,e(0, )(v+ 1)~ expliv(d — (]5))}
m,£=0
+0((v+1)79).
(4.31)
Now, we writeg, = Ah, if v>0 andg, = 0 if v < 0. We recall fron]14, Proposition 2.2]
that fory € R, andr € R,

< - —r
<|z//mod—21|‘i—12}4‘q Le(v+ 1))
veZ

Y g+
veZ

Using the Leibniz formula for differences, and recalling that= 4h; = 0if j<g + 1,
we deduce that

S+ 1T
veZ

g—1
C
T mmed o-la—1 q=1-s —r—s
s | mod 2r|9-1 ZZM el(v+1)
s=0veZ

q—1 oo

C

S————=—= > > |47 v+ 17 (4.32)

-1
|w mod 2n|q s=0 v=0
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From (4.28), (4.31), (4.32), we conclude that

q—1 oo

B ,mn, 0 s —m—L—s
2B — Y[ W(h, x, )] < Z om0 ‘i;q‘ﬁ)'zzmq v+ 1t

m, =0 | + | =0 v=0

1Bam,e(0, ) T2 s mts
P> T gt 2 2 AT e+ DT
m,Z 0 s=0v=0
+c Z(Ahv)(v +1)74. (4.33)

v=0

Sincex € (—1,1), and|y| <c(x), 2n — c1(x) >0 + ¢ > c2(x). Also,
10— @l =c[sin((O — ¢)/2)| =c0)lx = yl.
Finally, |x — y|>c|x — y|?. Hence, (4.33) implies (4.27).0J

In the next lemma, we estimate the quanfty*-? (F (x, y; r, ¢)) (cf. (4.19)) in the case
whenx € (—1,1) and|y| is close to 1. We will use it withx + K in place ofx for some
integerk.

Lemma 4.8. Leta>f> —1/2,x € (—1,1),0<1—|y|< min(1/36, 1 —|x|)?/25).Then
forv=0,1,...,

v+ 1712 ifo<y<,

v+ 1) if —1<y <0, (4.34)

1P, P (F(x, y;r, ) <clx) {

wherec(x) is bounded on compact subintervalgefl, 1).

Proof. It is not difficult to calculate that for € [0, 1], ¢ € [0, n],

Fx,yir ¢) =x +e1(x, yir, ) = L= x)r? = 1+ ea(x, y; 1, ), (4.35)
where, in this proof only,

1L-0A-pr* A+nA-y)
2 2

+v1—x2,/1— y?r cos¢ (4.36)

e1(x,y;r, @)=

and

1+0d+y) Q-0+ y)ré
2 2

+v/1—x2,/1— y2r cosg. (4.37)

e2(x, y;1, @) =
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Both of the functions;, ¢ can be estimated in the same way. Fag [0, 1], ¢ € [O, 7],
x € (—1,1), andy € [0, 1], we have

1+x)A- 1-x)(1-
|31(x,y;r,¢)|<( X)(z Iyl)+( X)(z Iy|)+ /1_y2

<1— |y +v2/1—[y[<(5/2/1—yl. (4.38)

Similarly, forr € [0, 1], ¢ € [0, n], x € (—1,1), andy € [—1, 0], we have

1+x)Q - 1-x)1-
e yir iyl < SEDAZUD A=A b T

<1-Iyl+v2/1-1y<(5B/2yV1- 1yl (4.39)

Now, let y>0. If |x|<(5/2+/1—y], then the first equation in (4.35) shows that
|F(x,y;r, )| <5/1—]y|<5/6. Consequently, (4.25) leads to the first estimate in (4.34)
when|x| < (5/2/1—[yl. If x| > (5/2/1— [y], thenF (x, y; r, ¢) has the same sign as
X. If x > (5/2)/I —1y], then the fact that

1-F@&,yind)21l—x—(5/9y1-1ly[2(1-x)/2

along with (4.25), leads to the first estimate in (4.34) again. ¥ —(5/2)/1 — [y] then
V1I-IyI<@-[x])/5=(1+x)/5 and

1+ FGx,yirn @) =1+x+ex, yir, ) 21+x - (5/2y/1—|yl=(1+x)/2

Therefore, (4.25) leads to the first estimate in (4.34) in this final case as well.
Next, let y<0. We will use the second equation in (4.35), and bound (4.39). If
F(x,y;r, ¢) > 0thenforr € [0, 1], ¢ € [O, n],

1—Fx,y;r¢) =2— 1 —x)r? —ea(x, y; 1, §)
= 1+x+(1—x)(1—r2)—82(x,y; r, $)
>14x—ex,y;r ¢).

Since
lea(x, yi r, ) < (5/D/1— [y|< (L — [x])/2< (1 +x)/2,
we deduce that + F(x, y; r, ¢) > (1+ x)/2. Therefore,4.25) leads to
|PS P (F e,y ) <c)+ D72 i Fx,yir ¢) > 0. (4.40)

Since| P, P (F(x, y; r, §)| <c(v+1)f whenF (x, y; r, ¢) <0 (cf. (4.25)), this completes
the proof of the lemma in the case wheg 0 as well. O

The next lemma is the analogue of Lemrhdin the case when € (—1,1) and|y| is
close to 1.
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Lemma 4.9. Leta, f>—1/2,K >1beaninteger, € (—1,1)and0<1—|y| < min(1/36,
a1- |x|)2/25). Leth, = Ofor all sufficiently largev. Then
c(K, x) K-1 oo
Phx < ——p Y Y (4K | 2y (4.41)
|x - y| m=0v=0

wherec(K, x) is bounded on compact subintervalg(efl, 1).

Proof. First, letoe > f. In view of (4.23),

o
1P(h,x, ) <c Y 1A+ 17K / |PTEDF (x, yi v, ) Idp(r, §).
v=0 R

Now we use estimate (4.11) fok'X!| and (4.34) for| P, KA (F (x, y; 1, ¢))|, and re-

call that|x — y|>c(x) to arrive at (4.41). Iff > «, we note that¥(«, f; h, x,y) =
Y, o h,—x,—y). O

Since?(h, x,y) = ¥(h, y, x), the above lemma also gives the bounds we need in
the case of' (h, 1, y) wheny is in a compact subinterval gf-1, 1). In the following
last lemma before the proof of Theoredrl, we state the bounds f&(h, £1, y) in a
more precise manner than in Lemma®. For the purpose of this paper, the lemma is
needed only to cover the case®th, &1, +1). We state it here in the more general form,
because its proof is immediate from our work so far in this paper, and because we need
it for other applications. In particular, in the important case whea f = ¢/2 — 1 for
some integey > 1, Lemma4.10 below enables one to obtain bounds on kernels based
on spherical polynomials on a Euclidean sphere embedd&d ii9,16]. In this case, an
anlogue of the following lemma was obtained by Narcowich, Petrushev, and Ward, and
was recently announced by Narcowich in a lecture in Oberwolfach (May, Ja64and
by Petrushev in a lecture in Nashville (December, 2003). We acknowledge the privilege of
being in the audience in both of these lectures, as well as the ensuing discussions with many
mathematicians, including Freeden, Narcowich, Prestin, Reimer, Sloan, Ward, and Xu.

Lemma 4.10. Leta, > — 1/2, K >1 be an integerfz, = 0 for all sufficiently largev.
Then

[¥(h, 1, )

o 1\ ¥/2+K/2+1/4

Z min ((v + 1), 1)

v=0 -y
K-1

<el X ) gKemy, ifo<y <1, (4.42)

m=0

[ee) K-1

Y @+ )Y o4 ARy if —1<y <0,

v=0 m=0
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and
Y(h, -1, y)

0 1 \P/2+K/2+1/4

> min ((v + 1)?, 1—)

v=0 Ty
K-1

<c X Y (v D2 4Ky if —1 < y<O0, (4.43)

m=0

o) K-1

D w4+ (4 1) AR if0 < <

v=0 m=0

Proof. In view of (4.25),

1P, O+ B (y)]
<o [ min(O + 17K (L — y)m#2 K214y 4 )72 ifo<y < 1,
S lev+ 1) if —1<y <0,

Therefore, (4.22) and (4.11) lead to (4.42). Estimate (4.43) follows from (4.42) by observing
thatq’(“’ﬁa hv_lay)qu(ﬁaaa ha 1,_)’) D

Finally, we are in a position to prove Theorehi.

Proof of Theorem 3.1. The hypothesis on the functidnimplies that for eacl > c(Q),
the sequencéh, ,} satisfies all the conditions on the sequehda the Lemmast.6,4.7,
4.9, and4.10. Each of the sums onin each of these lemmas is fo¢d)n <v<cin. Also,
the mean value theorem implies that with the differences applied to the variahkb for
integerr >1,

cin
Y Ayl <en TV (ROTY),
v=c(d)n

whereV (g) denotes the total variation gf Therefore, for any € R, and integer > 1,

o cin
YOV A hyal = Y 0+ DA byl <en® TV (RUTY),
n=0 v=c(d)n

With these observations, Lemma implies that
K—1

sup ||¢n(H,X, )||1 <cC Z V(h(j))’
n=0xeS, P,
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which is (2.10). Condition (2.11) follows from Lemmads/ (with ¢ = [Q] + 1), 4.9, and
4.10. O

. T —1/2
Proof of Theorem 3.3. In this proof only, we will write p,, := &, @ / P,*%P and

w = wy g. In this proof only, letgk,m = hik,2n — hy gn-1, Ye,n = by o1 — hy -2, ANy ;
be defined forj € Z by

V0 = (h@'x) = h@ 1) (h(x/2) = h(a0))

Theng,, = 0if k<2"2ork > 2", andy;, = 0if k<2" 3 ork > 2"t Hence,
8k.mYk.n = 0if [n —m| > 3. Therefore, for € R, (3.6) implies that form > 3,

o0 1 o0 o]
Tn(H, f,x)=) f dn (1) / ) D YenreMpe®) Y gm0 pr(w(y)dydv(r)
n=0 =0

k=0
m+2 00
= 3 [0 sngimpep ()
n=m—2 k=0

2 [ee)
= Z /dm+j(t)Zyk,m+jgk,mpk(I)Pk(X)de+j(t)
k=0

j=-2

2 00
= Z fdm+j(t)Zlﬁj(k/2m+’)pk(t)pk(x)dvm+j(t)~ (4.44)
j=-2 k=0
Now, we observe that each of the functiaiz§(|j| < 2) satisfies the conditions of The-
orem3.1to ensure that (2.10), (2.14), and (2.11) hold for each of the matfiites=
(f;(k/n)), |jl<2. LetJ be the interval, centered &, and having lengtt/|/2. Then for
x € Jandr € [-1,1]\ [,

D k2" ) pr () pr(t)| <2

k=0
Hence, forj = 0, £1,4+2, andx € J,

/ e (1) )W (/2" ) pie () pr()d Vi ()
re[-1,1\1 =0

<c(N27"Cdmtjllyyy;:p <c(DH27MC. (4.45)
Therefore, denoting by(z) the characteristic function df we obtain that foxx € J and
Jj=0,+1,+2,

/dm+j(t)Zlﬁj(k/2m+j)Pk(t)Pk(X)de+j(t)

k=0

c()

< +-§Z§

(4.46)

[ o 020 3062 pe 03I 0
k=0
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Using (2.10), (2.14), and Lemn#alwith m2 = w, g andmi = v, j, we obtain that

[ 0203 472D OOt 0

k=0 P
<C||dm+j}f”v,,,+j;p = c”dm+j ”vmﬂ-;l,p' (4-47)

Along with (4.44), this implies that

2
ltmHL Pl 7p <) 3 D Ndmtjllvyor.p +27C
j=-2

Therefore |7, (H, f)lls,p} € by, and Theoren2.1limplies thatf € B, 5 ,(x0). O
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