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Abstract

We obtain a characterization of local Besov spaces of functions on[−1,1] in terms of algebraic
polynomial operators. These operators are constructed using the coefficients in the orthogonal poly-
nomial expansions of the functions involved. The example of Jacobi polynomials is studied in further
detail. A by-product of our proofs is an apparently simple proof of the fact that the Cesàro means
of a sufficiently high integer order of the Jacobi expansion of a continuous function are uniformly
bounded.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the polynomials of best approximation to a continuous function on
[−1,1]neednot provide a goodpointwise approximation. For example, letf (x) := |x|, and
P ∗
n be its best polynomial approximation of degree atmostn,n = 1,2, . . . . Even thoughf is

a piecewise polynomial, the pointwise errorn|f (x)−P ∗
n (x)| remains bounded away from

0 at a set of points that becomes dense on[−1,1] asn → ∞ through a subsequence (cf.
[1, Theorem 4.1]). Many mathematicians, including Gaier, Ivanov, Saff, and Totik ([6,18],
and references therein), have studied the construction of polynomials that provide a near
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best approximation to piecewise analytic functions on the whole interval[−1,1], and an
exponentially fast decaying approximation at points of analyticity of the function.
For example, Gaier[6] constructed a sequence of linear operatorsGn on the space

C[−1,1] of continuous functions on[−1,1], such that for eachf ∈ C[−1,1], and integer
n�1,Gn(f ) is a polynomial of degree at mostn, and satisfies the following conditions:

max
x∈[−1,1] |f (x) − Gn(f, x)|�M(f )e−�n + En/6,∞(f ) (1.1)

and if f is regular in the complex neighborhood|z − x0|�d of a pointx0 ∈ [−1,1], then
|f (x0) − Gn(f, x0)|�M(f )d−4 exp(−cd2n), (1.2)

whereEn/6,∞(f ) is the minimal error of uniform approximation off by polynomials of
degree at mostn/6 (cf. (2.2) below),M(f ) is a positive constant depending only onf, and
c, � are absolute positive constants. Gaier’s construction is based on the Fourier–Chebyshev
coefficients off. In [11], Prestin and this author constructed a sequence of operatorsTn such
that maxx∈I |Tn(f, x)| tends to zero exponentially fast asn → ∞ if f is analytic onI, while
maxx∈I |Tn(f, x)| is larger than a polynomial in 1/nif some derivative off has a jump
discontinuity inI.
The techniques in[6,11]are dependent on complex function theory, andare not applicable

for local approximation of functionswhich are not piecewise analytic. In[13], wehavegiven
a construction of operators, similar to those in[11], but applicable to piecewise smooth
functions (with a commensurate rate of decay on intervals of smoothness). In this paper, we
construct polynomial operators,whosebehavior on subintervals of[−1,1]characterizesthe
local Besov spaces to which the functionmay belong on these subintervals. These operators
are based on the coefficients of an orthogonal polynomial expansion of the function. The
periodic analogue of these results is given in[15], where several numerical examples are
discussed in detail.
In the next section, we state ourmain result in a very general setting. This will identify the

conditions on the variousmatrices andmeasures needed in the construction of our operators.
In turn, the construction of these matrices, measures, etc. will be discussed in Section3 in
the context of the Jacobi polynomials. The proofs of the results in Sections2 and3will be
presented in Section4.
We thank the referees for their suggestions for an improvement of our original draft.

2. The results in a general setting

In this section, we describe our main results in the setting of a general orthogonal polyno-
mial system, identifying the various conditions that the polynomial operators should satisfy.
These conditions will then be verified in the context of Jacobi polynomials.

Let � be a positive, Borel measure on[−1,1], andS� denote the support of�. If A ⊆
[−1,1] is a Borel set,�(A) > 0, andf : A → R is �-measurable, we write

‖f ‖A,p := ‖f ‖�;A,p :=


{∫
A

|f (t)|pd�(t)
}1/p

if 1�p < ∞,

� − ess supt∈A|f (t)| if p = ∞.
(2.1)
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The spaceLp(A) := Lp(�;A) consists of all�-measurable functionsf with ‖f ‖A,p < ∞,
with the usual convention that two functions are considered equal if they are equal�-almost
everywhere. The symbolXp(A) = Xp(�;A) will denote the spaceLp(A) if 1�p < ∞
and the space of all uniformly continuous, bounded functions onA (equipped with the norm
‖ · ‖A,∞) if p = ∞. IfA ⊆ [−1,1] is a closed set, the symbolC∞

0 (A) will denote the class
of infinitely differentiable functionsf on [−1,1], such thatf (x) = 0 if x ∈ [−1,1] \ A.
In the sequel,� will be a fixed, finite measure, and we will often omit its mention from the
notations. Also, ifA = S�, we will omit it from the notations; for example, we will write
‖f ‖p := ‖f ‖S�,p. We will assume thatS� is an infinite set.
There are many equivalent ways of defining Besov spaces (cf.[5]). We find it most

convenient to define them using the sequence of degrees of approximation of the functions
involved. Forx�0, the class of all algebraic polynomials of degree atmostxwill be denoted
by�x . For f ∈ Xp andx�0, we define the degree of approximation off from�x by

Ex,p(f ) := E�;x,p(f ) := min
P∈�x

‖f − P ‖p. (2.2)

Next, we define a sequence space as follows. Let 0< ��∞, � > 0, anda = {an}∞n=0 be a
sequence of real numbers. We define

‖a‖�,� :=


{ ∞∑
n=0

2n��|an|�
}1/�

if 0 < � < ∞,

sup
n�0

2n�|an| if � = ∞.
(2.3)

The spaceof sequencesa forwhich‖a‖�,� < ∞will be denotedbyb�,�. For 1�p�∞, 0<

��∞, � > 0, the Besov spaceBp,�,� := B�;p,�,� consists of functionsf ∈ Xp for which
the sequence{E2n,p(f )} ∈ b�,�. For x0 ∈ [−1,1], the local Besov spaceBp,�,�(x0) :=
B�;p,�,�(x0) consists of functionsf ∈ Xp with the following property: There exists an
interval I, centered atx0 such that for every� ∈ C∞

0 (I ), the functionf� ∈ Bp,�,�. This
interval may depend uponf andx0 in addition to the other parameters.
Ourobjective in this paper is to characterize localBesovspaces in termsof operatorsbased

on the coefficients of the target function in termsof an orthogonal polynomial expansion.We
recall [19] that there is a unique system of polynomialspn := pn(�) ∈ �n, n = 0, 1, . . .,
eachpn having a positive leading coefficient, such that∫

pnpm d� =
{
1 if n = m,
0 if n �= m.

(2.4)

If f ∈ X1, we define its orthogonal polynomial coefficients by

f̂ (m) := f̂ (�;m) :=
∫

f (t)pm(t) d�(t), m = 0, 1, . . . . (2.5)

Our operators will be defined using a bi-infinite matrix. IfH = (hj,n) j=0,1,...
n=1,2,...

is a bi-

infinite matrix such that for eachn�1, hj,n = 0 if j is greater than some integer, we will
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define the operator

�n(H, f, x) := �n(�;H, f, x) :=
∞∑
j=0

hj,nf̂ (j)pj (x), f ∈ X1. (2.6)

We note that�n(H, f ) is a polynomial for eachn�1, and with

�n(H, x, y) := �n(�;H, x, y) :=
∞∑
j=0

hj,npj (x)pj (y), x, y ∈ R, (2.7)

we have the representation

�n(H, f, x) =
∫

f (y)�n(H, x, y)d�(y), f ∈ X1, x ∈ R. (2.8)

In the sequel, we find it convenient to definehk,t := 0 for any realx < t . Correspondingly,
we also define�t (H, f ) := 0 and�t (H, x, y) := 0 for all realt < 1. Forn�0, we write

�n(H, f ) := �n(�;H, f ) := �2n(H, f ) − �2n−1(H, f ). (2.9)

We note that ifhj,n = 0 for j > n, n = 0, 1, . . ., our notation implies that�n(H, f ) ∈ �n,
and�n(H, f ) ∈ �2n .
ForQ�1, the setSQ := SQ(�) consists of all matricesH such thathj,n = 0 if j > n,

hj,n = 1 if 0�j �n/2,

sup
n�1,x∈S�

‖�n(H, x, ·)‖1 < ∞ (2.10)

and for everyx0 ∈ S� and	 > 0, there exists a constantc = c(x0, 	) such that,

sup
n�1, y∈S�\[x0−	,x0+	]

nQ|�n(H, x, y)| < c, |x − x0|�	/2. (2.11)

An example of matrices inSQ is given in Theorem3.1 in the next section.
In the sequel, we adopt the following convention regarding constants. The symbols

c, c1, . . . will denote positive constants depending upon�, �, �, p, andQ, in addition to any
explicitly mentioned quantities. Their value may be different at different occurences, even
within the same formula.
We will characterize the local Besov spaces using the norms of the operators�n(H, f )

on subintervals of[−1,1]. We would also like to give a characterization using values of
these polynomials at certain points. As expected, this depends upon a quadrature formula,
and a connection between discrete and continuous norms of a polynomial. Accordingly, we
introduce some further notation. If
 is a signed, Borel measure on[−1,1], its total variation
measure will be denoted by|
| (or |d
| in the context of integration). For a
-measurable
function f, and
-measurable subsetA ⊆ [−1,1], we write‖f ‖
;A,p := ‖f ‖|
|;A,p. As
before, we will omit the mention of the setA if A = [−1,1].
The measure
 will be called an M–Z quadrature measure of ordern (for �) if its support

is a subset of the support of�,

‖P ‖
;p�c‖P ‖�;p, P ∈ �n, 1�p�∞ (2.12)
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and ∫
Pd
 =

∫
Pd�, P ∈ �n. (2.13)

For a sequence{
n} of M–Z quadrature measures, it is assumed tacithy that the constantc

in (2.12) is independent ofn. An estimate of form (2.12) is often called a Marcinkiewicz–
Zygmund-type inequality. Many examples of such estimates are known in the literature (for
example,[8,12], and references therein). In the next section, we will mention an example
in the case of Jacobi polynomials.
For the purpose of future reference, we note here that if
n is anM–Z quadrature measure

of ordern, n = 0, 1, . . ., H is a bi-infinite matrix withhj,n = 0 for all j > n, and (2.10)
holds, then also the following estimate holds.

sup
x∈S�

‖�m(H, x, ·)‖
n;1 < c, 0�m�n, n = 0, 1, . . . . (2.14)

Our main theorem in this paper is the following.

Theorem 2.1. Let1�p�∞, f ∈ Xp, x0 ∈ [−1,1], 0< ��∞, � > 0,Q > max(1,�),
H ∈ SQ, and for each integern�0, let 
n be an M–Z quadrature measure of order6(2n).
Then

f =
∞∑
n=0

�n(H, f ) =
∞∑
n=0

∫
�n(H, f, t){�2n+1(H, ·, t) − �2n−2(H, ·, t)}d
n(t),

(2.15)

with the series converging in the sense ofXp.Moreover,the following are equivalent.

(a) f ∈ Bp,�,�(x0).
(b) Thereexistsan interval I,centeredatx0,such that forevery� ∈ C∞

0 (I ), {‖�n(H, f�)‖p}
∈ b�,�.

(c) There exists an interval I,centered atx0, such that for every� ∈ C∞
0 (I ),

{‖�n(H, f�)‖
n;p} ∈ b�,�.
(d) There exists an interval I,centered atx0, such that{‖�n(H, f ) ‖I,p} ∈ b�,�.
(e) There exists an interval I,centered atx0, such that{‖�n(H, f )‖
n;I,p} ∈ b�,�.

In all the anticipated applications, the measures
n will be supported on finite setsCn of
points in[−1,1]. In this case, (2.15) presents{�n(H, f, t)}t∈Cn

as the sequence of coeffi-
cients in a series representation off, and the equivalence between parts (a) and (e) shows that
the local Besov spaces can be characterized using the absolute values of these coefficients.
We note here that the operators are defined using global information about the function, in
the form of the coefficientŝf (k), and yet, their behavior is different near different points,
depending upon the smoothness off near these points. Moreover, the local Besov spaces are
characterised in terms of the norms of{�n(H, f )} themselves, rather than their approxima-
tion to f, as in (1.1), (1.2). Theorem3.1below can be used to construct (in the case of Jacobi
polynomials) matrices that belong toSQ for every integerQ. Therefore, a single sequence
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of operators may be used for the characterization of all the smoothness classes, a situation
expected in polynomial approximation. The equivalence between (a) and (b) (or (c)) shows
that the apparently global condition thatf ∈ Xp is really not necessary if one is interested
only in the behavior off near a point. Working with the coefficientŝf� in place of those of
f, the local smoothness conditions imply the global behavior of the operator�n(H, f�).

3. Jacobi polynomials

In this section, we illustrate the technical conditions which we discussed in the previous
section. Thus, we demonstrate a general construction of the matrixH ∈ SQ in the case of
the Jacobi polynomials. We will recall a construction of M–Z quadrature formulas in this
case. We will also make an additional observation regarding expansion (2.15).
We recall that the Jacobi weight is defined for�,� > −1 by

w�,�(x) :=
{
(1− x)�(1+ x)� if x ∈ (−1,1),
0 if x ∈ R \ (−1,1).

The correspondingmeasure��,� is definedbyd��,�(x) := w�,�(x)dx, andwewill simplify
our notations by writing�,� in place of�; for example, we write‖f ‖�,�;A,p instead of

‖f ‖��,�;A,p. We recall the definition of the Jacobi polynomials{P (�,�)
n } [19]. For integer

n�0,P (�,�)
n ∈ �n has a positive leading coefficient, and with

�(�,�)
n := 2�+�+1

2n + � + � + 1

(n + � + 1)(n + � + 1)

(n + 1)(n + � + � + 1)
, (3.1)

we have for integersn,m�0,∫ 1

−1
P

(�,�)
n (x)P

(�,�)
m (x)w�,�(x)dx =

{
�(�,�)
n if n = m,

0 if n �= m.
(3.2)

Thus,pn(��,�) = �(�,�)
n

−1/2
P

(�,�)
n .

3.1. M–Z quadrature

Nevai[17, Theorem 25, p. 168]has given an example of M–Z quadratures for the Jacobi

weights. Form�1, let{xk,m}mk=1 be the zeros ofP (�,�)
m , and

�k,m :=


m−1∑
j=0

�(�,�)
j

−1
P

(�,�)
j (xk,m)

2


−1

, k = 1, . . . , m.

Nevai has proved that form�cn, the measure
∗
m that associates the mass�k,m with each

xk,m is an M–Z quadrature measure of ordern. It is possible to construct M–Z quadra-
ture measures supported at an “arbitrary” system of points, subject to certain denseness
conditions. We plan to address this question in another paper.
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3.2. The matrices and Cesàro means

The following theorem gives a general construction for matrices inSQ(�,�).

Theorem 3.1. Let �,�� − 1/2, � > 0, Q�0, K�Q + � + � + 2 be an integer,and
h : [0,∞) → R be a function which is a K times iterated integral of a function of bounded
variation, h′(x) = 0 if 0�x��, and h(x) = 0 if x > c. Then the matrixH = (hk,n)

defined byhk,n = h(k/n), n�1, satisfies(2.10)and (2.11)with ��,� in place of�. In
particular, if h(x) = 1 for 0�x�1/2andh(x) = 0 for x > 1, thenH ∈ SQ(�,�).

We recall that ifk > −1, and

C[k]
n (�,�; x, y) :=

n∑

=0

(
n − 
 + k

k

)
�


(�,�)−1
P


(�,�)(x)P

(�,�)(y), (3.3)

the Cesàro means of orderk of f ∈ X1 are defined by

S[k]
n (�,�; f, x) :=

(
n + k

k

)−1 ∫ 1

−1
f (y)C[k]

n (�,�; x, y)w�,�(y)dy. (3.4)

The following theorem is well known[2,19].

Theorem 3.2. Let�,�� − 1/2,k > max(�,�) + 1/2.Then forn = 1,2, . . .,

max
x∈[−1,1]‖C

[k]
n (�,�; x, 1)‖1�cnk. (3.5)

In Theorem3.1, the fact thatH satisfies (2.10) can be obtained using Theorem3.2by a
simple summation by parts argument as in[10]. However, the bounds for the decay of the
Cesàro kernelsC[k]

n , similar to (2.11) and known to this author[4], do not improve with the
orderk. Our method to prove such bounds for the kernels does not use the properties of the
Cesàro means. Instead, Theorem3.2 follows in the case of integerk as an application of
Lemma4.6obtained during our proof of (2.10). We feel that this proof is simpler than that
given in[19].

3.3. Series expansion

Finally, we make a remark about representation (2.15). The system of functions
{�2n+1(H, ·, t) − �2n−2(H, ·, t)}t∈Cn

is not linearly independent, and hence, the coeffi-
cients of the series representation in (2.15) are not uniquely determined. The following
theorem shows that in the case whenH is as in Theorem3.1, the behavior of an arbitrary
coefficient sequence which works in (2.15) implies the local Besov conditions.

Theorem 3.3. Let�,�� − 1/2,� = ��,�, 1�p�∞, f ∈ Xp, x0 ∈ [−1,1], 0< ��∞,
� > 0,Q > max(�, 1),H ∈ SQ(�,�) be as in Theorem3.1,and for each integern�0,
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let 
n be an M–Z quadrature measure of order6(2n). For n�0, let dn be a
n measurable
function,and‖dn‖
n;p�c. Suppose that

f =
∞∑
n=0

∫
dn(t){�2n+1(�,�;H, ·, t) − �2n−2(�,�;H, ·, t)}d
n(t), (3.6)

where the series converges in the sense ofXp. If there exists an interval I centered atx0
such that{‖dn‖
n;I,p} ∈ b�,�, thenf ∈ B�,�;p,�,�(x0).

We note that since{�2n+1(�,�;H, ·, t) − �2n−2(�,�;H, ·, t)} are not linearly indepen-
dent, the converse of Theorem3.3cannot hold.

4. Proofs

In order to prove Theorem2.1, we need some lemmas. The first lemma is a simple
consequence of the Riesz–Thorin interpolation theorem[3, Theorem 1.1.1], and we state it
in order to refer to it in a convenient way.

Lemma 4.1. Let m1, m2 be signed measures(having bounded variation)on a measure
space S,supported onS1 andS2, respectively,� : S × S → R be a bounded,|m1| × |m2|
measurable function,�(x, t) = �(t, x) for x, t ∈ S, 1�p�∞, f ∈ Lp(|m1|), and let

Tf (x) :=
∫

f (t)�(x, t)dm1(t).

Then with

A = max(sup
x∈S1

‖�(x, ·)‖|m2|;1, sup
x∈S2

‖�(x, ·)‖|m1|;1),

we have

‖Tf ‖|m2|;p�A‖f ‖|m1|;p. (4.1)

Proof.We observe that∫
|Tf (x)||dm2(x)| �

∫ ∫
|f (t)||�(x, t)||dm1(t)||dm2(x)|

� sup
t∈S1

‖�(·, t)‖|m2|;1‖f ‖|m1|;1�A‖f ‖|m1|;1.

This proves (4.1) in the casep = 1. The casep = ∞ is obvious, and the general
case follows from the Riesz–Thorin interpolation theorem applied to the linear operator
f → Tf . �

The first application of this lemma is the following lemma, summarizing some properties
of the operators�n(H).
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Lemma 4.2. Let 1�p�∞, f ∈ Xp, x0 ∈ [−1,1], 0< ��∞, � > 0,Q > max(1,�),
H ∈ SQ, and for each integern�1, let
n be an M–Z quadrature measure of order6(2n).
Then(2.15)holds with convergence in the sense ofXp.Moreover,

‖�m(H, f )‖p�c‖f ‖p, m = 0, 1, . . . . (4.2)

Consequently,for m�0,

Em,p(f )�‖f − �m(H, f )‖p�cEm/2,p(f ). (4.3)

Proof. Estimate (4.2) follows immediately from (2.10) and Lemma4.1, applied with
m2 = m1 = �. The first estimate of (4.3) is obvious. Sincehk,m = 1 for k�m/2, we
have�m(H, P ) = P for all P ∈ �m/2. Therefore, choosingP ∈ �m/2 with ‖f −
P ‖p�2Em/2,p(f ), we obtain

‖f − �m(H, f )‖p = ‖f − P − �m(H, f − P)‖p
� ‖f − P ‖p + ‖�m(H, f − P)‖p
� c‖f − P ‖p�cEm/2,p(f ).

This proves the second inequality in (4.3). The first equation in (2.15) follows from (4.3)
and the definition of�n. Next, we observe thatRx := �2n+1(H, x, ·) − �2n−2(H, x, ·) ∈
�2n+1 andhk,2n+1 − hk,2n−2 = 1 if 2n−2 < k�2n. Since ̂�n(H, f )(k) �= 0 only when
2n−2 < k�2n, andRx�n(H, f ) ∈ �6(2n), we see from (2.13) that

�n(H, f, x) =
∫

�n(H, f, t)R(t)d�(t) =
∫

�n(H, f, t)Rx(t)d
n(t), x ∈ R.

This gives the second equation in (2.15).�

Another application of Lemma4.1 is the following lemma, relating the continuous and
discrete norms of polynomials on[−1,1], as well as on subintervals of[−1,1].

Lemma 4.3. Letm�0, 
 be an M–Z quadrature measure of order6m, and suppose that
there exists a matrixH ∈ SQ for someQ�0.Then forP ∈ �2m,

‖P ‖�;p�c‖P ‖
;p�c1‖P ‖�;p. (4.4)

If J ⊂ I ⊆ [−1,1] are intervals,then forP ∈ �m,

‖P ‖�;J,p � c(I, J ){‖P ‖
;I,p + m−Q‖P ‖
;p},
‖P ‖
;J,p � c(I, J ){‖P ‖�;I,p + m−Q‖P ‖�;p}. (4.5)

Proof. LetP ∈ �2m. In view of (2.13) and the fact thathk,4m = 1 for 0�k�2m, we have

P(x) =
∫

P(t)�4m(H, x, t)d�(t) =
∫

P(t)�4m(H, x, t)d
(t).
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We use Lemma4.1with m2 = � andm1 = 
, and use (2.10), (2.14) forH, to arrive at the
first inequality in (4.4). The second inequality is (2.12).
Next, letP ∈ �m, and� ∈ C∞

0 (I ) be chosen so that�(x) = 1 if x ∈ J . By the direct
theorem of approximation theory[5, Theorem 6.2, Chapter 7], there existsR ∈ �m such
that

‖� − R‖∞ �c(I, J )m−Q.

Therefore, using (4.4) for the polynomialPR ∈ �2m,

‖P ‖�;J,p = ‖P�‖�;J,p�‖PR‖�;p + ‖P(� − R)‖�;p
� c(I, J ){‖PR‖
;p + m−Q‖P ‖�;p}
� c(I, J ){‖P�‖
;p + m−Q‖P ‖
;p}
� c(I, J ){‖P ‖
;I,p + m−Q‖P ‖
;p}.

This proves the first inequality in (4.5). The second inequality is proved in a similar way.
�

We are now in a position to prove Theorem2.1.

Proof of Theorem 2.1.First, we prove the equivalence of parts (a)–(c). Let (a) hold, and
� be aC∞ function such thatf� ∈ Bp,�,�. In view of (4.3),

‖�n(H, f�)‖p � ‖�2n(H, f�) − f�‖p + ‖�2n−1(H, f�) − f�‖p
� cE2n−2,p(f�).

This implies part (b). Conversely, let (b) hold, and� be aC∞ function as in that part. In
view of (2.15),

E2n,p(f�)�‖f� −
n∑

m=0

�m(H, f�)‖p�
∞∑

m=n+1

‖�m(H, f�)‖p.

Since{‖�m(H, f�)‖p} ∈ b�,�, the discrete Hardy inequality[5, Lemma 3.4, p. 27]now
leads to part (a). The equivalence between parts (b) and (c) is immediate from (4.4).
Next, wewill show that part (b) implies part (d), and part (d) implies part (a). LetI be as in

part (b), andJ (respectively,J1) be the interval centered atx0 and length|I |/2 (respectively,
|I |/4). Let� ∈ C∞

0 (I ) be chosen so that�(x) = 1 for x ∈ J and‖�‖∞ = 1. Forx ∈ J1,
we have from (2.11) that for any integerm�1,∣∣∣∣∫ f (t)(1− �(t))�m(H, x, t)d�(t)

∣∣∣∣
=

∣∣∣∣∣
∫
S�\J

f (t)(1− �(t))�m(H, x, t)d�(t)

∣∣∣∣∣
�

∫
|x−t |� |I |/8

|f (t)(1− �(t))�m(H, x, t)|d�(t)�c(I )m−Q

∫
|f (t)|d�(t)

�c(I )m−Q‖f ‖p.
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Applying this inequality once withm = 2n and once withm = 2n−1, we deduce that

‖�n(H, (1− �)f )‖J1,∞ �c(f, I )2−nQ.

Therefore,

‖�n(H, f )‖J1,p � ‖�n(H,�f )‖p + c‖�n(H, (1− �)f )‖J1,∞
� ‖�n(H,�f )‖p + c(f, I )2−nQ.

Since both the sequences{‖�n(H,�f )‖p} and{2−nQ} are inb�,�, part (d) is proved.
Next, let part (d) hold,I be the interval as in that part, and� ∈ C∞

0 (I ). By the direct
theorem of approximation theory[5, Theorem 6.2, Chapter 7], there existsR ∈ �2n such
that

‖� − R‖[−1,1],∞�c2−nQ.

Therefore, using (4.2) and (2.15), we obtain

E2n+1,p(f�) � ‖f� − R�2n(H, f )‖p�‖(f − �2n(H, f ))�‖p
+‖(� − R)�2n(H, f )‖p

� c(I,�, f ){‖f − �2n(H, f )‖I,p + 2−nQ}

� c(I,�, f )

{ ∞∑
m=n+1

‖�m(H, f )‖I,p + 2−nQ

}
.

The discrete Hardy inequality[5, Lemma 3.4, p. 27]now shows thatf� ∈ Bp,�,�. Thus,
part (d) implies part (a).
Thus, parts (a)–(d) are equivalent. The equivalence between parts (d) and (e) is a simple

consequence of (4.5).�

In the sequel, we will assume that the measure� is the Jacobi distribution��,� and often
omit �,� from the notations, when it is not expected to cause confusion.
The proof of Theorem3.1 requires several technical estimates. We observe first that

Pn
(�,�)(x) = (−1)nPn

(�,�)(−x), n = 0, 1, . . . . Hence, there is no loss of generality in
assuming that���� − 1/2. The idea behind the proof of (2.10) is the following. We will
use the formula (cf.[19, Formulas (4.5.3), (4.3.3), (4.1.1)])

Kn,1(�,�; 1, x) :=
n∑

m=0

�m
(�,�)−1

Pm
(�,�)(x)Pm

(�,�)(1)

= 2−�−�−1 (n + � + � + 2)

(� + 1)(n + � + 1)
Pn

(�+1,�)(x)

= 2(� + 1)

2n + � + � + 2
�n

(�+1,�)−1
Pn

(�+1,�)(x)Pn
(�+1,�)(1) (4.6)

repeatedly along with a summation by parts to obtain an alternate formula for the kernel
�n(H, 1, x). Itwill thenbeclear that‖�n(H, 1, ·)‖1�c. In viewof theconvolutionstructure
on the Jacobi polynomials[2], this will lead to (2.10). The estimate required in (2.11)
is proved in the case whenx ∈ (−1,1) andy ∈ (−c1(x), c2(x)) using the asymptotic
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formulas for the Jacobi polynomials and some ideas from[13,14]. The case wheny �∈
(−c1(x), c2(x)) requires a more elaborate analysis, involving a product formula proved in
[7] by Koornwinder. The details will be organized in a series of lemmas, starting with a
general formula for summation by parts.
During the remainder of the proof of Theorem3.1, we will adopt the following notation.

The forward difference operator is defined by

�a
 = �1a
 = a
+1 − a
, �ka
 = �(�k−1a
), 
�0, k�2. (4.7)

We will write for x ∈ R,

(k(x) = 2x + � + � + k

2(� + k − 1)
, k�2

and define a modified difference of a sequence by

a[1]

 = �a
, a[k]


 = a
[k−1]

+1

(k(
 + 1)
− a

[k−1]



(k(
)
, 
�0, k�2. (4.8)

The partial summation operators corresponding to these differences are defined by

s[1]
m =

m∑

=0

a
, s[k]
m =

m∑

=0

(k(
)s[k−1]

 , m�0, k�2. (4.9)

We defines[k]
m = 0 if m < 0.

The following lemma describes some properties of the partial summation.

Lemma 4.4. Let {h
} be a sequence withh
 = 0 if 
 is greater than some positive integer,
{a
} be any sequence.We have fork = 1,2, . . .,

∞∑

=0

h
a
 = (−1)k
∞∑


=0

h[k]

 s[k]


 (4.10)

and for
 = 0, 1, . . ., k = 1,2, . . .,

|h[k]

 |�c

k−1∑
m=0

∣∣∣∣∣ �k−mh


(
 + 1)k+m−1

∣∣∣∣∣ . (4.11)

Proof. Using the fact thats[1]
−1 = 0, and the fact thath
 = 0 for sufficiently large
, a

summation by parts shows that

∞∑

=0

h
a
 =
∞∑


=0

h
(s
[1]

 − s

[1]

−1) =

∞∑

=0

h
s
[1]

 −

∞∑

=0

h
+1s
[1]

 = −

∞∑

=0

�h
s
[1]

 .

Hence, (4.10) holds whenk = 1. Supposek�2 and the formula holds fork − 1 in place
of k. Using the fact thats[k]


 − s
[k]

−1 = (k(
)s

[k−1]

 , and summing by parts again, we
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deduce that

∞∑

=0

h[k−1]

 s[k−1]


 =
∞∑


=0

h
[k−1]



(k(
)
(s[k]


 − s
[k]

−1) = −

∞∑

=0

h[k]

 s[k]


 .

Thus, (4.10) is proved by induction.
In this proof only, we will denote byRt , t ∈ R, the set of all rational functions such

that the degree of the denominator is at leastt more than the degree of the numerator. We
note that eachRt is a linear space,Ru ⊆ Rt for u� t . Moreover, ifR ∈ Rt , andL is a
polynomial of precise degree 1, thenR(·+1)−R(·) ∈ Rt+1, andR/L ∈ Rt+1. In order to
prove (4.11), we will prove by induction that fork = 1,2, . . ., there existRk,m ∈ Rk+m−1,
m = 0, . . . , k − 1, such that

h[k]

 =

k−1∑
m=0

Rk,m(
 + 1)�k−mh
, 
 = 0, 1, . . . . (4.12)

We will write Rk,m = 0 if m < 0 orm > k − 1. Eq. (4.12) is obvious ifk = 1. Suppose
k�2 and (4.12) is proved fork − 1 in place ofk. From definition (4.8), we see that

h[k]

 = 1

(k(
 + 1)

{
�h[k−1]


 − 1

(� + k − 1)(k(
)
h[k−1]




}
. (4.13)

From the induction hypothesis,

�h[k−1]

 =

k−2∑
m=0

�
(
Rk−1,m(
 + 1)�k−1−mh


)
=

k−2∑
m=0

Rk−1,m(
 + 2)�k−mh


+
k−2∑
m=0

�k−1−mh

(
Rk−1,m(
 + 2) − Rk−1,m(
 + 1)

)
=

k−1∑
m=0

�k−mh

(
Rk−1,m(
 + 2) + Rk−1,m−1(
 + 2) − Rk−1,m−1(
 + 1)

)
.

(4.14)

The induction hypothesis also gives

h[k−1]

 =

k−2∑
m=0

Rk−1,m(
 + 1)�k−1−mh
 =
k−1∑
m=0

Rk−1,m−1(
 + 1)�k−mh
. (4.15)
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We now put form = 0, . . . , k − 1, andx ∈ R,

Rk,m(x) := 1

(k(x + 1)

Rk−1,m(x + 2) + Rk−1,m−1(x + 2) − Rk−1,m−1(x + 1)

− 1

(� + k − 1)(k(x)
Rk−1,m−1(x + 1)

 . (4.16)

SinceRk−1,m−1(· + 2) − Rk−1,m−1(· + 1) ∈ Rk+m−2, it is easy to deduce thatRk,m ∈
Rk+m−1. Eqs. (4.13)–(4.15) now imply that (4.12) holds fork. Thus, the proof is complete
by induction.
Estimate (4.11) is immediately clear from (4.12).�

Next, we introduce some kernel functions. Forx, y ∈ R, n = 0, 1, . . ., let

Kn,1(x, y) := Kn,1(�,�; x, y) :=
n∑


=0

�

(�,�)−1

P

(�,�)(x)P


(�,�)(y),

Kn,k(x, y) := Kn,k(�,�; x, y) :=
n∑


=0

(k(
)K
,k−1(x, y), k = 2, 3, . . . (4.17)

with the convention as usual thatKt,k(x, y) = 0 if t < 0. Applying (4.6) repeatedly, we
obtain

Kn,k(x, 1) = Kn,k(1, x) = (n + � + � + k + 1)

2�+�+k(n + � + 1)(� + k)
Pn

(�+k,�)(x). (4.18)

We will also use heavily the following product formula proved by Koornwinder[7].

Proposition 4.1. Let����−1/2,R := [0, 1]×[0,�],and forx, y ∈ [−1,1],r ∈ [0, 1],
� ∈ [0,�], let

F(x, y; r,�) := (1+ x)(1+ y)

2
+ (1− x)(1− y)

2
r2

+
√
1− x2

√
1− y2r cos� − 1. (4.19)

There exists a probability measure� = ��,� onR such that forn = 0, 1, . . ., andx, y ∈
[−1,1],

Pn
(�,�)(x)Pn

(�,�)(y) =
∫
R

Pn
(�,�)(1)Pn

(�,�)(F (x, y; r,�))d�(r,�). (4.20)

Lemma4.4 and Proposition4.1 immediately lead to the following lemma, giving (in
particular) alternative expressions for the kernel�n(H).
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Lemma 4.5. Let h := {h
} be a sequence withh
 = 0 if 
 is greater than some positive
integer,�,�� − 1/2.Then fork = 1,2, . . ., we have

�(h, x, y) := �(�,�; h, x, y) :=
∞∑


=0

h
�

(�,�)−1

P

(�,�)(x)P


(�,�)(y)

= (−1)k
∞∑


=0

h[k]

 K
,k(x, y). (4.21)

In particular, for k = 1,2, . . .,

�(h, x,1)= �(h, 1, x)

= (−1)k
∞∑


=0

h[k]



(
 + � + � + k + 1)

2�+�+k(
 + � + 1)(� + k)
P


(�+k,�)(x). (4.22)

If ���� − 1/2, then fork = 1,2, . . .,

�(h, x, y)

= (−1)k
∫
R

∞∑

=0

h[k]



(
 + � + � + k + 1)

2�+�+k(
 + � + 1)(� + k)

×P

(�+k,�)(F (x, y; r,�))d�(r,�). (4.23)

Proof.We apply Lemma4.4with a
 = �

(�,�)−1

P

(�,�)(x)P


(�,�)(y) to obtain (4.21). The
equation (4.22) follows from (4.21) and (4.18). In view of Proposition4.1,

a
 = �

(�,�)−1

∫
R

P

(�,�)(1)P


(�,�)(F (x, y; r,�))d�(r,�).

Therefore, (4.23) follows from (4.22).�

Our next lemma gives a general bound on the norms of the kernels in (4.23).

Lemma 4.6. Let h = {h
} be a sequence withh
 = 0 if 
 is greater than some positive
integer,�,�� − 1/2,andK > max(�,�) + 3/2be an integer. Then

sup
x∈[−1,1]

‖�(h, x, ·)‖�,�;1�c‖�(h, 1, ·)‖�,�;1�c

K∑
j=1

∞∑

=0

(
 + 1)j−1|�j h
|. (4.24)

Proof. First, let���. In this proof only, letf denote the function�(h, 1, y). Then using
the notation of Askey and Wainger[2, Formula (A-2)], we see that forx, y ∈ [−1,1],
�(h, x, y) is equal to thegeneralized translationf (y; x).Hence, thefirst inequality in (4.24)
follows from [2, Theorem 1]. SinceK > � + 3/2, we have from[19, Formula (7.34.1)]
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that for
 = 0, 1, . . .,∫ 1

0
(1− y)�|P


(�+K,�)(y)|dy�c(
 + 1)K−�−2,∫ 0

−1
(1+ y)�|P


(�+K,�)(y)|dy�c(
 + 1)−1/2.

Consequently, for
 = 0, 1, . . .,

(
 + � + � + K + 1)

2�+�+K(
 + � + 1)(� + K)
‖P


(�+K,�)‖�,�;1�c(
 + 1)2K−2.

In view of (4.11), we deduce that
∞∑


=0

|h[K]

 | (
 + � + � + K + 1)

2�+�+K(
 + � + 1)(� + K)
‖P


(�+K,�)‖�,�;1

�c

K−1∑
m=0

∞∑

=0

(
 + 1)K−m−1|�K−mh
|.

The second estimate in (4.24) now follows from (4.22).
If � > �, we observe that�(�,�; h, x, y) = �(�, �; h,−x,−y), and

‖�(�,�; h, x, ·)‖�,�;1 = ‖�(�, �; h,−x, ·)‖�,�;1. �

We have now finished with our preparation for the proof of (2.10).We pause in our proof
of Theorem3.1, and indicate how Lemma4.6 leads to a proof of Theorem3.2.

Proof of Theorem 3.2 for integer k > max(�,�) + 1/2.We let

h
,n =
{ (

n − 
 + k

k

)
if 
 = 0, . . . , n,

0 otherwise

and observe (by induction onj) that with differences applied to the variable
,

�j h
,n = (−1)j
(
n − 
 + k − j

k − j

)
, 
 = 0, . . . , n, j = 1, . . . , k

and

�k+1h
,n =
{
(−1)k+1 if 
 = n,
0 otherwise.

Therefore,

n∑

=0

k+1∑
j=1

(
 + 1)j−1|�j h
,n|
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= (n + 1)k +
n∑


=0

k∑
j=1

(
 + 1)j−1
(
n − 
 + k − j

k − j

)

�(n + 1)k + c

n∑

=0

k−1∑
j=0

(
k − 1

j

)
(
 + 1)j (n − 
 + 1)k−1−j �cnk.

Thus, Lemma4.6(applied withk + 1 in place ofK) implies (3.5). �

We now resume our proof of Theorem3.1, with the preparations for the proof of (2.11).
Again, the details are encoded in a number of lemmas. First, we recall some properties of
the Jacobi polynomials.

Proposition 4.2. Let�,�� − 1/2.For 
 = 0, 1, . . ., we have

|P

(�,�)(x)|�c

{
min((
 + 1)�, (1− x)−�/2−1/4(
 + 1)−1/2) if 0�x�1,
min((
 + 1)�, (1+ x)−�/2−1/4(
 + 1)−1/2) if − 1�x�0.

(4.25)

Further, for any integerq�1, there exist complex valued functionsAm, continuous on
(0,�), such that for� ∈ (0,�),

P

(�,�)(cos�) = 2R


q−1∑
m=0

Am(�)(
 + 1)−m−1/2exp(i
�)

 + O((
 + 1)−q−1/2),

(4.26)

where theO term is uniform on compact subintervals of(0,�).

Proof. Estimate (4.25) is proved in[19, Theorem 7.32.2], the asymptotics (4.26) is proved
in [19, Theorem 8.21.9]. �

We start with the case whenx ∈ (−1,1) and|y| is away from 1.

Lemma 4.7. Let�,�� − 1/2,x ∈ (−1,1), 1− |y|� min(1/36, (1− |x|)2/25),q�1 be
an integer. Leth
 = 0 if 
 is greater than some integer,and�h
 = 0 if 
�q + 1.Then

|�(h, x, y)|� c(q, x)

|x − y|q
q−1∑
s=0

∞∑

=0

|�q−sh
|(
 + 1)−s , (4.27)

wherec(q, x) is bounded for x in compact subintervals of(−1,1).

Proof. In this proof only, letx = cos�, y = cos�. Using Lemma4.5, we obtain

�(h, x, y) = −
∞∑


=0

�h
K
,1(x, y). (4.28)
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According to[19, Formula (4.5.2)],

K
,1(cos�, cos�)

= 2−�−�

2
 + � + � + 2

(
 + 2)(
 + � + � + 2)

(
 + � + 1)(
 + � + 1)

×P
+1
(�,�)(cos�)P


(�,�)(cos�) − P

(�,�)(cos�)P
+1

(�,�)(cos�)

cos� − cos�
. (4.29)

Writing B1,m,((�,�) = Am(�)A((�)ei�, andB2,m,((�,�) = Am(�)A((�)ei�, and using
(4.26), we deduce that

P
+1
(�,�)(cos�)P


(�,�)(cos�)

= 2�


q−1∑
m,(=0

B1,m,((�,�)(
 + 1)−m−(−1 exp(i
(� + �))


+2�


q−1∑

m,(=0

B2,m,((�,�)(
+1)−m−(−1 exp(i
(� − �))

 + O((
 + 1)−q−1).

(4.30)

We interchange the roles of� and� above, and substitute the resulting asymptotics back
in (4.29) to obtain (withB3,m,((�,�) = B1,m,((�,�) − B1,m,((�, �) andB4,m,((�,�) =
B2,m,((�,�) − B2,m,((�, �))

2�+�(x − y)K
,1(x, y) = �


q−1∑
m,(=0

B3,m,((�,�)(
 + 1)−m−( exp(i
(� + �))


+�


q∑

m,(=0

B4,m,((�,�)(
 + 1)−m−( exp(i
(� − �))


+O((
 + 1)−q).

(4.31)

Now, we writeg
 = �h
 if 
�0 andg
 = 0 if 
 < 0. We recall from[14, Proposition 2.2]
that for� ∈ R, andr ∈ R,∣∣∣∣∣∑


∈Z

g
(
 + 1)−rei
�

∣∣∣∣∣ � c

|� mod 2�|q−1

∑

∈Z

∣∣∣�q−1 (
g
(
 + 1)−r

)∣∣∣ .
Using the Leibniz formula for differences, and recalling thatgj = �hj = 0 if j �q + 1,
we deduce that∣∣∣∣∣∑


∈Z

g
(
 + 1)−rei
�

∣∣∣∣∣ � c

|� mod 2�|q−1

q−1∑
s=0

∑

∈Z

|�q−1−sg
|(
 + 1)−r−s

� c

|� mod 2�|q−1

q−1∑
s=0

∞∑

=0

|�q−sh
|(
 + 1)−r−s . (4.32)
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From (4.28), (4.31), (4.32), we conclude that

2�+�|x − y||�(h, x, y)| �
q−1∑

m,(=0

|B3,m,((�,�)|
|� + �|q−1

q−1∑
s=0

∞∑

=0

|�q−sh
|(
 + 1)−m−(−s

×
q−1∑

m,(=0

|B4,m,((�,�)|
|� − �|q−1

q−1∑
s=0

∞∑

=0

|�q−sh
|(
 + 1)−m−(−s

+c

∞∑

=0

(�h
)(
 + 1)−q . (4.33)

Sincex ∈ (−1,1), and|y|�c(x), 2� − c1(x)�� + ��c2(x). Also,

|� − �|�c
∣∣sin(

(� − �)/2
)∣∣ �c(x)|x − y|.

Finally, |x − y|�c|x − y|q . Hence, (4.33) implies (4.27).�

In the next lemma, we estimate the quantityP

(�,�)(F (x, y; r,�)) (cf. (4.19)) in the case

whenx ∈ (−1,1) and|y| is close to 1. We will use it with� + K in place of� for some
integerK.

Lemma 4.8. Let���� −1/2,x ∈ (−1,1), 0�1−|y|� min(1/36, (1−|x|)2/25).Then
for 
 = 0, 1, . . .,

|P

(�,�)(F (x, y; r,�))|�c(x)

{
(
 + 1)−1/2 if 0�y�1,
(
 + 1)� if −1�y < 0,

(4.34)

wherec(x) is bounded on compact subintervals of(−1,1).

Proof. It is not difficult to calculate that forr ∈ [0, 1],� ∈ [0,�],

F(x, y; r,�) = x + �1(x, y; r,�) = (1− x)r2 − 1+ �2(x, y; r,�), (4.35)

where, in this proof only,

�1(x, y; r,�) := (1− x)(1− y)r2

2
− (1+ x)(1− y)

2

+
√
1− x2

√
1− y2r cos� (4.36)

and

�2(x, y; r,�) := (1+ x)(1+ y)

2
− (1− x)(1+ y)r2

2

+
√
1− x2

√
1− y2r cos�. (4.37)
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Both of the functions�1, �2 can be estimated in the same way. Forr ∈ [0, 1],� ∈ [0,�],
x ∈ (−1,1), andy ∈ [0, 1], we have

|�1(x, y; r,�)| � (1+ x)(1− |y|)
2

+ (1− x)(1− |y|)
2

+
√
1− y2

� 1− |y| + √
2
√
1− |y|�(5/2)

√
1− |y|. (4.38)

Similarly, for r ∈ [0, 1],� ∈ [0,�], x ∈ (−1,1), andy ∈ [−1,0], we have

|�2(x, y; r,�)| � (1+ x)(1− |y|)
2

+ (1− x)(1− |y|)
2

+
√
1− y2

� 1− |y| + √
2
√
1− |y|�(5/2)

√
1− |y|. (4.39)

Now, let y�0. If |x|�(5/2)
√
1− |y|, then the first equation in (4.35) shows that

|F(x, y; r,�)|�5
√
1− |y|�5/6. Consequently, (4.25) leads to the first estimate in (4.34)

when|x|�(5/2)
√
1− |y|. If |x | > (5/2)

√
1− |y|, thenF(x, y; r,�) has the same sign as

x. If x > (5/2)
√
1− |y|, then the fact that

1− F(x, y; r,�)�1− x − (5/2)
√
1− |y|�(1− x)/2,

along with (4.25), leads to the first estimate in (4.34) again. Ifx < −(5/2)
√
1− |y| then√

1− |y|�(1− |x|)/5 = (1+ x)/5, and

1+ F(x, y; r,�) = 1+ x + �1(x, y; r,�)�1+ x − (5/2)
√
1− |y|�(1+ x)/2.

Therefore, (4.25) leads to the first estimate in (4.34) in this final case as well.
Next, let y�0. We will use the second equation in (4.35), and bound (4.39). If

F(x, y; r,�) > 0 then forr ∈ [0, 1],� ∈ [0,�],
1− F(x, y; r,�) = 2− (1− x)r2 − �2(x, y; r,�)

= 1+ x + (1− x)(1− r2) − �2(x, y; r,�)

� 1+ x − �2(x, y; r,�).

Since

|�2(x, y; r,�)|�(5/2)
√
1− |y|�(1− |x|)/2�(1+ x)/2,

we deduce that 1− F(x, y; r,�)�(1+ x)/2. Therefore, (4.25) leads to

|P

(�,�)(F (x, y; r,�))|�c(x)(
 + 1)−1/2, if F(x, y; r,�) > 0. (4.40)

Since|P

(�,�)(F (x, y; r,�))|�c(
+1)� whenF(x, y; r,�)�0 (cf. (4.25)), this completes

the proof of the lemma in the case wheny�0 as well. �

The next lemma is the analogue of Lemma4.7 in the case whenx ∈ (−1,1) and|y| is
close to 1.



H.N. Mhaskar / Journal of Approximation Theory 131 (2004) 243–267 263

Lemma 4.9. Let�,��−1/2,K�1bean integer,x ∈ (−1,1)and0�1−|y|� min(1/36,
(1− |x|)2/25).Leth
 = 0 for all sufficiently large
. Then

|�(h, x, y)|� c(K, x)

|x − y|K
K−1∑
m=0

∞∑

=0

|�K−mh
|(
 + 1)�+�+1−m, (4.41)

wherec(K, x) is bounded on compact subintervals of(−1,1).

Proof. First, let���. In view of (4.23),

|�(h, x, y)|�c

∞∑

=0

|h[K]

 |(
 + 1)�+K

∫
R

|P

(�+K,�)(F (x, y; r,�))|d�(r,�).

Now we use estimate (4.11) for|h[K]

 | and (4.34) for|P


(�+K,�)(F (x, y; r,�))|, and re-
call that |x − y|�c(x) to arrive at (4.41). If� > �, we note that�(�,�; h, x, y) =
�(�, �; h,−x,−y). �

Since�(h, x, y) = �(h, y, x), the above lemma also gives the bounds we need in
the case of�(h,±1, y) wheny is in a compact subinterval of(−1,1). In the following
last lemma before the proof of Theorem3.1, we state the bounds for�(h,±1, y) in a
more precise manner than in Lemma4.9. For the purpose of this paper, the lemma is
needed only to cover the case of�(h,±1,∓1). We state it here in the more general form,
because its proof is immediate from our work so far in this paper, and because we need
it for other applications. In particular, in the important case when� = � = q/2 − 1 for
some integerq�1, Lemma4.10 below enables one to obtain bounds on kernels based
on spherical polynomials on a Euclidean sphere embedded inSq [9,16]. In this case, an
anlogue of the following lemma was obtained by Narcowich, Petrushev, and Ward, and
was recently announced by Narcowich in a lecture in Oberwolfach (May, 2004)[16] and
by Petrushev in a lecture in Nashville (December, 2003). We acknowledge the privilege of
being in the audience in both of these lectures, as well as the ensuing discussions with many
mathematicians, including Freeden, Narcowich, Prestin, Reimer, Sloan, Ward, and Xu.

Lemma 4.10. Let �,�� − 1/2,K�1 be an integer,h
 = 0 for all sufficiently large
.
Then

|�(h, 1, y)|

�c



∞∑

=0

min

(
(
 + 1)2,

1

1− y

)�/2+K/2+1/4

×
K−1∑
m=0

(
 + 1)�+1/2−m|�K−mh
| if 0�y < 1,

∞∑

=0

(
 + 1)�+�+1
K−1∑
m=0

(
 + 1)−m|�K−mh
| if −1�y < 0,

(4.42)
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and

�(h,−1, y)|

�c



∞∑

=0

min

(
(
 + 1)2,

1

1+ y

)�/2+K/2+1/4

×
K−1∑
m=0

(
 + 1)�+1/2−m|�K−mh
| if −1< y�0,

∞∑

=0

(
 + 1)�+�+1
K−1∑
m=0

(
 + 1)−m|�K−mh
| if 0 < y�1.

(4.43)

Proof. In view of (4.25),

|P

(�+K,�)(y)|
�c

{
min((
 + 1)�+K, (1− y)−�/2−K/2−1/4(
 + 1)−1/2) if 0�y < 1,
c(
 + 1)� if −1�y < 0.

Therefore, (4.22) and (4.11) lead to (4.42). Estimate (4.43) follows from (4.42) by observing
that�(�,�; h,−1, y) = �(�, �; h, 1,−y). �

Finally, we are in a position to prove Theorem3.1.

Proof of Theorem 3.1.The hypothesis on the functionh implies that for eachn�c(Q),
the sequence{h
,n} satisfies all the conditions on the sequenceh in the Lemmas4.6,4.7,
4.9, and4.10. Each of the sums on
 in each of these lemmas is forc(�)n�
�c1n. Also,
the mean value theorem implies that with the differences applied to the variable
 and for
integerr�1,

c1n∑

=c(�)n

|�rh
,n|�cn−r+1V (h(r−1)),

whereV (g) denotes the total variation ofg. Therefore, for anys ∈ R, and integerr�1,

∞∑
n=0

(
 + 1)s |�rh
,n| =
c1n∑


=c(�)n

(
 + 1)s |�rh
,n|�cns−r+1V (h(r−1)).

With these observations, Lemma4.6 implies that

sup
n�0,x∈S�

‖�n(H, x, ·)‖1 < c

K−1∑
j=0

V (h(j)),
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which is (2.10). Condition (2.11) follows from Lemmas4.7(with q = �Q� + 1), 4.9, and
4.10. �

Proof of Theorem 3.3. In this proof only, we will writepn := �n
(�,�)−1/2

Pn
(�,�), and

w = w�,�. In this proof only, letgk,m = hk,2m − hk,2m−1, yk,n = hk,2n+1 − hk,2n−2, and�j

be defined forj ∈ Z by

�j (x) =
(
h(2j x) − h(2j+1x)

)
(h(x/2) − h(4x)) .

Thengk,m = 0 if k�2m−2 or k > 2m, andyk,n = 0 if k�2n−3 or k > 2n+1. Hence,
gk,myk,n = 0 if |n − m|�3. Therefore, forx ∈ R, (3.6) implies that form�3,

�m(H, f, x) =
∞∑
n=0

∫
dn(t)

∫ 1

−1

∞∑
(=0

y(,np((y)p((t)

∞∑
k=0

gk,mpk(x)pk(y)w(y)dyd
(t)

=
m+2∑

n=m−2

∫
dn(t)

∞∑
k=0

yk,ngk,mpk(t)pk(x)d
n(t)

=
2∑

j=−2

∫
dm+j (t)

∞∑
k=0

yk,m+j gk,mpk(t)pk(x)d
m+j (t)

=
2∑

j=−2

∫
dm+j (t)

∞∑
k=0

�j (k/2
m+j )pk(t)pk(x)d
m+j (t). (4.44)

Now, we observe that each of the functions�j (|j |�2) satisfies the conditions of The-
orem3.1 to ensure that (2.10), (2.14), and (2.11) hold for each of the matricesMj =
(�j (k/n)), |j |�2. LetJ be the interval, centered atx0, and having length|I |/2. Then for
x ∈ J andt ∈ [−1,1] \ I,∣∣∣∣∣

∞∑
k=0

�j (k/2
m+j )pk(x)pk(t)

∣∣∣∣∣ �c(I )2−mQ.

Hence, forj = 0,±1,±2, andx ∈ J ,∣∣∣∣∣
∫
t∈[−1,1]\I

dm+j (t)

∞∑
k=0

�j (k/2
m+j )pk(t)pk(x)d
m+j (t)

∣∣∣∣∣
�c(I )2−mQ‖dm+j‖
m+j ;p�c(I )2−mQ. (4.45)

Therefore, denoting by�(t) the characteristic function ofI, we obtain that forx ∈ J and
j = 0,±1,±2,∣∣∣∣∣

∫
dm+j (t)

∞∑
k=0

�j (k/2
m+j )pk(t)pk(x)d
m+j (t)

∣∣∣∣∣
�

∣∣∣∣∣
∫

dm+j (t)�(t)
∞∑
k=0

�j (k/2
m+j )pk(t)pk(x)d
m+j (t)

∣∣∣∣∣ + c(I )

2mQ
(4.46)
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Using (2.10), (2.14), and Lemma4.1with m2 = ��,� andm1 = 
m+j , we obtain that∥∥∥∥∥
∫

dm+j (t)�(t)
∞∑
k=0

�j (k/2
m+j )pk(t)pk(·)d
m+j (t)

∥∥∥∥∥
p

�c‖dm+j�‖
m+j ;p = c‖dm+j‖
m+j ;I,p. (4.47)

Along with (4.44), this implies that

‖�m(H, f )‖J,p�c(I )


2∑

j=−2

‖dm+j‖
m+j ;I,p + 2−mQ

 .

Therefore,{‖�m(H, f )‖J,p} ∈ b�,�, and Theorem2.1 implies thatf ∈ Bp,�,�(x0). �
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